|本期目录/Table of Contents|

[1]温琦,赵文博,张幽静,等.植物干旱胁迫响应的研究进展[J].江苏农业科学,2020,48(12):11-15.
 Wen Qi,et al.Research progress of plant response to drought stress[J].Jiangsu Agricultural Sciences,2020,48(12):11-15.
点击复制

植物干旱胁迫响应的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第12期
页码:
11-15
栏目:
专论与综述
出版日期:
2020-06-20

文章信息/Info

Title:
Research progress of plant response to drought stress
作者:
温琦1 赵文博5 张幽静6 梁塔娜1 张艳欣1 李丽丽1 黄凤兰1234
1.内蒙古民族大学生命科学学院,内蒙古通辽 028000; 2.内蒙古自治区高校蓖麻产业工程技术中心,内蒙古通辽 028000;
3.内蒙古自治区蓖麻育种重点实验室,内蒙古通辽 028000; 4.内蒙古自治区蓖麻产业协同创新培育中心,内蒙古通辽 028000;
5.兴安职业技术学院,内蒙古乌兰浩特 137400; 6.内蒙古牙克石市乌尔其汉镇畜牧兽医草原站,内蒙古牙克石 022159
Author(s):
Wen Qiet al
关键词:
植物干旱胁迫生理生化植物激素抗旱性
Keywords:
-
分类号:
Q945.78
DOI:
-
文献标志码:
A
摘要:
干旱是影响植物正常生长发育和限制作物产量的主要非生物胁迫之一,会影响植物的生长、发育和繁殖等生命活动,同时也是研究得较多的逆境因子之一。当土壤中的水分不能满足植物生长所需时,就会形成干旱的环境,而植物在受到干旱胁迫时,可以通过细胞对干旱信号的感知和传递来调节基因的表达并产生新的蛋白质,从而引起大量形态学、生理学和生物化学的变化。本文通过对干旱胁迫下植物的生理生化指标、植物激素以及相关抗性基因和蛋白的变化进行综述,以期为耐旱植物品种的研究及抗性植株的培育提供理论参考。
Abstract:
-

参考文献/References:

[1]张琳,李欢欢,于淑坤,等. 番茄Sl WDR204基因正调控植物干旱胁迫[J]. 安徽农业科学,2019,47(1):96-98,114.
[2]Toker C,Canci H,Yildirim T. Evaluation of perennial wild Cicer species for drought resistance[J]. Genetic Resources and Crop Evolution,2007,54(8):1781-1786.
[3]Tuberosa R,Salvi S. Genomics approaches to improve drought tolerance of crops[J]. Trends in Plant Science,2006,11(8):405-412.
[4]唐益苗,赵昌平,高世庆,等. 植物抗旱相关基因研究进展[J]. 麦类作物学报,2009,29(1):166-173.
[5]Jaleel C A,Gopi R,Sankar B,et al. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress[J]. Comptes rendus Biologies,2008,331(1):42-47.
[6]Lee D K,Jung H,Jang G,et al. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance[J]. Plant Physiology,2016,172:575-588.
[7]Henry A,Gowda V R P,Torres R O,et al. Variation in root system architecture and drought response in rice (Oryza sativa):phenotyping of the OryzaSNP panel in rainfed lowland fields[J]. Field Crops Research,2011,120(2):205-214.
[8]Hughes J,Hepworth C,Dutton C R,et al. Reducing stomatal density in barley improves drought tolerance without impacting on yield[J]. Plant Physiology,2017,174:776-787.
[9]Ghotbi-Ravandi,A. A,Shahbazi M,Shariati M,et al. Effects of mild and severe drought stress on photosynthetic efficiency in tolerant and susceptible Barley (Hordeum vulgare L.) genotypes[J]. Journal of Agronomy and Crop Science,2015,200(6):403-415.
[10]赵娜,于卓,马艳红,等. 高丹草幼苗抗旱和耐盐性的品种间差异[J]. 中国草地学报,2007,29(3):39-44.
[11]赵兰. 4种地被观赏竹抗旱性研究[D]. 重庆:西南大学,2010.
[12]李云霞,张建生,吴永华,等. 5种景天科地被植物抗旱性比较研究[J]. 干旱区资源与环境,2010,24(2):183-186.
[13]武燕奇,郭素娟. 5个板栗品种(系)对持续干旱胁迫和复水的生理响应[J]. 中南林业科技大学学报,2017,37(10):67-74.
[14]迟琳琳. 科尔沁沙地4种灌木对干旱胁迫的生理响应[J]. 干旱区资源与环境,2017,31(5):158-162.
[15]任磊,赵夏陆,许靖,等. 4种茶菊对干旱胁迫的形态和生理响应[J]. 生态学报,2015,35(15):5131-5139.
[16]可静,李进,李永洁. 干旱胁迫下黑果枸杞幼苗对外源水杨酸的生理响应[J]. 植物生理学报,2016,52(4):497-504.
[17]Hsiao T C. Physiological effects of plant in response to water stress[J]. Ann Rev Plant Physiol,1973,24(1):519-570.
[18]Ashraf M,Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany,2007,59(2):206-216.
[19]戴高兴,彭克勤,萧浪涛,等. 聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响[J]. 中国水稻科学,2006,20(5):557-559.
[20]沈彦军,李红军,雷玉平. 干旱指数应用研究综述[J]. 南水北调与水利科技,2013,11(4):128-133.
[21]Zhang H W,Liu W,Wan L Y,et al. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice[J]. Transgenic Research,2010,19(5):809-818.
[22]de Carvalho M H C. Drought stress and reactive oxygen species:production,scavenging and signaling[J]. Plant Signal Behav,2008,3(3):156-165.
[23]Harb A,Awad D,Samarah N. Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought[J]. Journal of Plant Interactions,2015,10(1):109-116.
[24]安玉艳,梁宗锁,郝文芳. 杠柳幼苗对不同强度干旱胁迫的生长与生理响应[J]. 生态学报,2011,31(3):716-725.
[25]Marok M A,Tarrago L,Ksas B,et al. A drought-sensitive barley variety displays oxidative stress and strongly increased contents in low-molecular weight antioxidant compounds during water deficit compared to a tolerant variety[J]. Journal of Plant Physiology,2013,170(7):633-645.
[26]Fujita M,Fujita Y,Noutoshi Y,et al. Crosstalk between abiotic and biotic stress responses:a current view from the points of convergence in the stress signaling networks[J]. Current Opinion in Plant Biology,2006,9(4):436-442.
[27]Verma V,Ravindran P,Kumar P P. Plant hormone-mediated regulation of stress responses[J]. BMC Plant Biology,2016,16:1-10.
[28]Zhu J K. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol,2002,53:247-273.
[29]张荣萍. ABA与植物抗旱关系的研究进展[J]. 北京农业,2014(27):242-243.
[HJ1.8mm][30]赵敏,王玥萱,徐运飞,等. 干旱胁迫下拟南芥中H2S与ABA信号关系研究[J]. 植物研究,2019,39(1):104-112.
[31]Wei Z M,Laby R J,Zumoff C H,et al. Harpin,elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora[J]. Science,1992,257(5066):85-88.
[32]Wu L J,Zhang Z J,Zhang H W,et al. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt,drought,and freezing[J]. Plant Physiology,2008,148(4):1953-1963.
[33]Seo Y J,Park J B,Cho Y J,et al. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants[J]. Molecules and Cells,2010,30(3):271-277.
[34]王园. 香蕉ASR基因抗逆功能的研究[D]. 海口:海南大学,2010.
[35]Bittelli M,Flury M,Campbell G S,et al. Reduction of transpiration through foliar application of chitosan[J]. Agricultural and Forest Meteorology,2001,107(3):167-175.
[36]Zhang B,Ramonell K,Somerville S,et al. Characterization of early,chitin-induced gene expression in Arabidopsis[J]. Molecular Plant-Microbe Interactions,2002,15(9):963-970.
[37]Xing X H,Jiang H Q,Zhou Q,et al. Improved drought tolerance by early IAA- and ABA-dependent H2O2 accumulation induced by α-naphthaleneacetic acid in soybean plants[J]. Plant Growth Regulation,2016,80(3):303-314.
[38]燕丽萍,夏阳,梁慧敏,等. 转BADH基因苜蓿T1代遗传稳定性和抗盐性研究[J]. 草业学报,2009,18(6):65-71.
[39]Maheswari M,Varalaxmi Y,Vijayalakshmi A,et al. Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum[J]. Biologia Plantarum,2010,54(4):647-652.
[40]Quan R D,Hu S J,Zhang Z L,et al. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance[J]. Plant Biotechnology Journal,2010,8(4):476-488.
[41]Cao Y F,Song F M,Goodman R M,et al. Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress[J]. Journal of Plant Physiology,2006,163(11):1167-1178.
[42]Hu H H,Dai M Q,Yao J L,et al. Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. PNAS,2006,103(35):12987-12992.
[43]林秀琴,袁坤,王真辉,等. 植物响应逆境胁迫的比较蛋白质组学研究进展[J]. 热带农业科学,2009,29(2):52-57.
[44]兰玉婷,王双蕾,李征珍,等. 沙冬青属植物响应非生物胁迫的蛋白质组学研究进展[J]. 生物技术通报,2019,35(1):112-119.
[45]张美,张会. 胚胎发育晚期丰富蛋白(LEA蛋白)与植物抗逆性研究进展[J]. 生物资源,2017,39(3):155-161.
[46]Huang J,Sun S J,Xu D Q,et al. A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.)[J]. Plant Molecular Biology,2012,80(3):337-350.
[47]Li J B,Luan,Y S,Liu Z. Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco[J]. Physiologia Plantarum,2015,155(3):248-266.
[48]Chen Y S,Lo S F,Sun P K,et al. A late embryogenesis abundant protein HVA1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty[J]. Plant Biotechnology Journal,2014,13(1):105-116.
[49]Ge F W,Tao P,Zhang Y,et al. Characterization of AQP gene expressions in Brassica napus during seed germination and in response to abiotic stresses[J]. Biologia Plantarum,2014,58(2):274-282.

相似文献/References:

[1]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(12):116.
[2]李光,龚宁.干旱胁迫对金线兰POD活性及同工酶酶谱的影响[J].江苏农业科学,2014,42(11):208.
 Li Guang,et al(08).Effects of drought stress on activity and isoenzyme zymogram of POD in Anoectochilus roxburghii[J].Jiangsu Agricultural Sciences,2014,42(12):208.
[3]陈莹,钟理,赵丽丽,等.截叶铁扫帚种子萌发期对岩溶生境高钙干旱的生理生化反应[J].江苏农业科学,2014,42(09):335.
 Chen Ying,et al.Physiological and biochemical responses of Lespedeza cuneata seedlings to different calcium and drought stresses in karst habitats[J].Jiangsu Agricultural Sciences,2014,42(12):335.
[4]岳莉然,孙妙婷.紫叶酢浆草光合特性及耐旱性研究[J].江苏农业科学,2013,41(08):169.
 Yue Liran,et al.Study on photosynthetic characteristics and drought tolerance of Oxalis triangularis cv. purpurea[J].Jiangsu Agricultural Sciences,2013,41(12):169.
[5]李鹏,刘济明,颜强,等.干旱胁迫对小蓬竹繁殖和某些生理特性的影响[J].江苏农业科学,2014,42(08):181.
 Li Peng,et al.Effects of drought stress on reproduction and some physiological characteristics of Drepanostachyum luodianense[J].Jiangsu Agricultural Sciences,2014,42(12):181.
[6]程小毛,罗翠芹.不同土壤水分处理对香樟幼苗生理特性的影响[J].江苏农业科学,2013,41(09):171.
 Cheng Xiaomao,et al.Effects of different soil water treatments on physiological characteristics of Cinnamomum camphora seedlings[J].Jiangsu Agricultural Sciences,2013,41(12):171.
[7]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(12):349.
[8]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
 Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(12):292.
[9]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
 Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(12):348.
[10]杨阳,刘秉儒,贾倩民,等.赤霉素对干旱胁迫下沙冬青种子萌发的影响[J].江苏农业科学,2014,42(05):271.
 Yang Yang,et al.Effect of gibberellin on seed germination of Ammopiptanthus mongolicus under drought stress[J].Jiangsu Agricultural Sciences,2014,42(12):271.
[11]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(12):362.
[12]赖金莉,李欣欣,薛磊,等.植物抗旱性研究进展[J].江苏农业科学,2018,46(17):23.
 Lai Jinli,et al.Research progress on drought resistance of plants[J].Jiangsu Agricultural Sciences,2018,46(12):23.

备注/Memo

备注/Memo:
收稿日期:2019-06-04
基金项目:国家自然科学基金(编号:31160290、31860071);内蒙古自治区自然科学基金面上项目(编号:2017MS0339);内蒙古自治区草原英才计划(编号:201511);内蒙古自治区草原英才创新团队——蓖麻分子育种研究创新人才团队支持计划(2017);内蒙古自治区草原英才滚动支持计划(2020);内蒙古民族大学自治区科技储备项目子课题(编号:2018NDCB05-2);内蒙古自治区蓖麻产业协同创新中心建设项目(2019);内蒙古自治区本科直属高校2019年“双一流”建设项目一带一路作物学科研项目(编号:NMDGJ0017);内蒙古自治区科技重大专项(2019);内蒙古自治区高校蓖麻产业工程技术研究中心开放基金(编号:MDK2019016、MDK2018014);内蒙古民族大学2017研究生重点建设课程(生物工程技术原理);内蒙古民族大学2018年研究生重点建设课程(现代分子生物学新技术)。
作者简介:温琦(1993—),女,内蒙古通辽人,硕士研究生,研究方向为植物生物化学与分子生物学。E-mail:1321561041@qq.com。
通信作者:黄凤兰,博士,教授,从事蓖麻分子育种研究。E-mail:329341679@qq.com。
更新日期/Last Update: 2020-06-20