|本期目录/Table of Contents|

[1]陈满静,任艳,彭秋,等.基于BSA-seq方法定位贵州高粱抗炭疽病害关键遗传区段[J].江苏农业科学,2022,50(5):28-34.
 Chen Manjing,et al.Mapping of key genetic segments of sorghum resistance to anthracnose in Guizhou Province based on BSA-seq method[J].Jiangsu Agricultural Sciences,2022,50(5):28-34.
点击复制

基于BSA-seq方法定位贵州高粱抗炭疽病害关键遗传区段(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第5期
页码:
28-34
栏目:
生物技术
出版日期:
2022-03-05

文章信息/Info

Title:
Mapping of key genetic segments of sorghum resistance to anthracnose in Guizhou Province based on BSA-seq method
作者:
陈满静 任艳 彭秋 李青风 高杰 邓小锋
贵州省农业科学院旱粮研究所,贵州贵阳 550006
Author(s):
Chen Manjinget al
关键词:
高粱炭疽病抗性候选区段BSA-seq
Keywords:
-
分类号:
S435.14
DOI:
-
文献标志码:
A
摘要:
高粱炭疽病是威胁高粱生长的主要病害之一,挖掘高粱抗炭疽病相关基因能够为高粱抗性品种育种打下基础。利用前期田间试验鉴定出的高粱高抗材料F41和高感材料B57进行杂交构建F2:3代分离群体,挑选高梁高抗炭疽病植株和高感炭疽病植株各30株,分别构建2个极端性状的DNA混合池,利用高通量测序技术与集团分离分析法相结合的方法(BSA-seq)进行全基因组重测序和关联分析,定位和抗性性状相关的基因组区段。通过SNP-index及InDel-index方法进行关联分析及对候选区域进行基因注释,共注释到基因143个,其中非同义突变基因49个,移码突变基因16个。研究结果为高粱抗炭疽病分子机制及抗性相关基因的克隆奠定了理论基础。
Abstract:
-

参考文献/References:

[1]邓小锋,陈满静,曹绍书,等. 贵州糯质高粱GBSSI基因型的鉴定[J]. 贵州农业科学,2020,48(5):13-18.
[2]王小波. 贵州酱香型白酒用粱状况及对策分析[C]//谷粮商务信息网,贵州省农业科学院旱粮研究所.谷粮网2019年第六届中国高粱产业高峰论坛会刊集.仁怀:中国高粱产业高峰论坛,2019:34-39.
[3]徐秀德,刘志恒. 高粱病虫害原色图鉴[M]. 北京:中国农业科学技术出版社,2013.
[4]Erpelding J E,Prom L K. Variation for anthracnose resistance within the Sorghum germplasm collection from Mozambique,Africa[J]. Plant Pathology Journal,2006,5(1):28-34.
[5]Thomas M D. Development of leaf anthracnose and its effect on yield and grain weight of Sorghum in west Africa[J]. Plant Disease,1996,80(2):151.
[6]徐婧,姜钰,胡兰,等. 高粱抗炭疽病资源筛选及病情与产量损失的关系[J]. 中国农业科学,2019,52(22):4079-4087.
[7]邓小锋,彭秋,李青风,等. 高粱炭疽病抗性机理研究进展[J]. 贵州农业科学,2019,47(11):68-74.
[8]Chala A,Tronsmo A M,Brurberg M B. Genetic differentiation and gene flow in Colletotrichum sublineolum in Ethiopia,the centre of origin and diversity of Sorghum,as revealed by AFLP analysis[J]. Plant Pathology,2011,60(3):474-482.
[9]Felderhoff T J,McIntyre L M,Saballos A,et al. Using genotyping by sequencing to map two novel anthracnose resistance loci in Sorghum bicolor[J]. Genes Genomes Genetics,2016,6(7):1935-1946.
[10]Erpeldi J E,Prom L K. Evaluation of Malian Sorghum germplasm for resistance against anthracnose[J]. Plant Pathology Journal,2004,3(2):65-71.
[11]Erpelding J E,Wang M L. Response to anthracnose infection for a random selection of Sorghum germplasm[J]. Plant Pathology Journal,2007,6(2):127-133.
[12]Prom L K,Erpelding J E,Montes-Garcia N. Chinese Sorghum germplasm evaluated for resistance to downy mildew and anthracnose[J]. Communications in Biometry and Crop Science,2007,2(1):26-31.
[13]Erpelding J E. Field evaluation of anthracnose disease response for the Sorghum germplasm collection from the Kayes region of Mali[J]. Tropical and Subtropical Agroecosystems,2008(8):291-296.
[14]Erpelding J E. Anthracnose disease response for photoperiod-insensitive Ethiopian germplasm from the US sorghum collection[J]. World Journal of Agricultural Science,2009,5(6):707-713.
[15]Singh M,Chaudhary K,Boora K S.RAPD-based SCAR marker SCA 12 linked to recessive gene conferring resistance to anthracnose in sorghum[Sorghum bicolor (L.) Moench][J]. Theoretical and Applied Genetics,2006,114(1):187-192.
[16]Cuevas H E,Prom L K,Rosa-Valentin G.Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes[J]. PLoS One,2018,13(2):e0191877.
[17]Cuevas H E,Prom L K,Cruet-Burgos C M. Genome-wide association mapping of anthracnose (Colletotrichum sublineolum) resistance in NPGS Ethiopian sorghum germplasm[J]. Genes Genomes Genetics,2019,9(9):2879-2885.
[18]Cuevas H E,Prom L K.Evaluation of genetic diversity,agronomic traits,and anthracnose resistance in the NPGS Sudan sorghum core collection[J]. BMC Genomics,2020,21(1):88.
[19]曾维英,赖振光,孙祖东,等. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报,2021,47(8):1460-1471.
[20]张之昊,王俊,刘章雄,等. 基于BSA-Seq技术挖掘大豆中黄622的多小叶基因[J]. 作物学报,2020,46(12):1839-1849.
[21]Hill J T,Demarest B L,Bisgrove B W,et al. MMAPPR:mutation mapping analysis pipeline for pooled RNA-seq[J]. Genome Research,2013,23(4):687-697.
[22]Fekih R,Takagi H,Tamiru M,et al. MutMap+:genetic mapping and mutant identification without crossing in rice[J]. PLoS One,2013,8(7):e68529.
[23]Altschul S F,Madden T L,Schffer A A,et al. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs[J]. Nucleic Acids Research,1997,25(17):3389-3402.
[24]Ashburner M,Ball C A,Blake J A,et al. Gene Ontology:tool for the unification of biology[J]. Nature Genetics,2000,25(1):25-29.
[25]Kanehisa M,Goto S,Kawashima S,et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research,2004,32:277-280.
[26]Cuevas H E,Prom L K,Erpelding J E.Inheritance and molecular mapping of anthracnose resistance genes present in sorghum line SC112-14[J]. Molecular Breeding,2014,34(4):1943-1953.
[27]Burrell A M,Sharma A,Patil N Y,et al. Sequencing of an anthracnose-resistant sorghum genotype and mapping of a major QTL reveal strong candidate genes for anthracnose resistance[J]. Crop Science,2015,55(2):790-799.
[28]Cuevas H E,Prom L K,Cooper E A,et al. Genome-wide association mapping of anthracnose (Colletotrichum sublineolum) resistance in the US sorghum association panel[J]. The Plant Genome,2018,11(2):99-112.
[29]Patil N Y,Klein R R,Williams C L,et al. Quantitative trait loci associated with anthracnose resistance in sorghum[J]. Crop Science,2017,57(2):877-890.

相似文献/References:

[1]彭陈,何晓兰,黄益洪,等.高粱链格孢叶斑病病原菌鉴定[J].江苏农业科学,2014,42(11):165.
 Peng Chen,et al().Identification of pathogen of Alternaria leaf spot in sorghum[J].Jiangsu Agricultural Sciences,2014,42(5):165.
[2]倪玉红,赵秋荣,赵小军,等.温度、降雨量和日照时数对草莓生长发育及炭疽病发生的影响[J].江苏农业科学,2014,42(02):133.
 Ni Yuhong,et al.Effects of temperature,rainfall and sunshine hours on growth and occurrence of anthracnose in strawberry[J].Jiangsu Agricultural Sciences,2014,42(5):133.
[3]李祥栋,张明生,王洋,等.贵州优质酒用高粱Waxy基因的鉴定分析[J].江苏农业科学,2014,42(05):39.
 Li Xiangdong,et al.Identification and analysis of Waxy gene in brewing sorghum from Guizhou Province[J].Jiangsu Agricultural Sciences,2014,42(5):39.
[4]明红梅,陈蒙恩,周健,等.呷酒酿造新工艺[J].江苏农业科学,2015,43(08):260.
 Ming Hongmei,et al.Study on new brewing technology of Za wine[J].Jiangsu Agricultural Sciences,2015,43(5):260.
[5]卢峰,张飞.矮壮素对高粱群体微环境及光合物质积累的调节作用[J].江苏农业科学,2015,43(08):79.
 Lu Feng,et al.Regulating effect of chlormequat chloride on micro-environment and accumulation of photosynthetic materials of sorghum population[J].Jiangsu Agricultural Sciences,2015,43(5):79.
[6]李志华,王艳秋,邹剑秋.中国高粱品种资源分析与再利用[J].江苏农业科学,2015,43(06):109.
 Li Zhihua,et al.Re-utilization and analysis of Chinas sorghum varieties resources[J].Jiangsu Agricultural Sciences,2015,43(5):109.
[7]吴文嫱,韦永选,周鑫,等.大薯组培苗抗炭疽病接种方法的比较[J].江苏农业科学,2015,43(10):174.
 Wu Wenqiang,et al.Comparison of anthracnose-resistant inoculation methods in winged yam[J].Jiangsu Agricultural Sciences,2015,43(5):174.
[8]石瑞,杨丽丽,刘树楠,等.外源NO对NaCl胁迫下高粱幼苗生理响应的调节[J].江苏农业科学,2016,44(08):139.
 Shi Rui,et al.Regulating effect of exogenous NO on physiological response of sorghum seedlings under NaCl stress[J].Jiangsu Agricultural Sciences,2016,44(5):139.
[9]刁锐琦,胡云.不同氮浓度对高粱苗期生长特性及土壤性质的影响[J].江苏农业科学,2016,44(09):108.
 Diao Ruiqi,et al.Effects of different nitrogen concentrations on seedling growth characteristics and soil properties of sorghum[J].Jiangsu Agricultural Sciences,2016,44(5):108.
[10]朱凯,张飞,柯福来,等.机械化高粱芽苗形态建成及生理特性对保水剂的响应[J].江苏农业科学,2016,44(10):161.
 Zhu Kai,et al.Response of morphogenesis and physiological characteristics of mechanized sorghum at seedling stage to water-retaining agent[J].Jiangsu Agricultural Sciences,2016,44(5):161.

备注/Memo

备注/Memo:
收稿日期:2021-09-08
基金项目:国家科技支撑计划(编号:2014BAD07B02-2-4);黔农科院青年基金( 编号:[2018]57号)。
作者简介:陈满静(1991—),女,贵州三穗人,硕士,助理研究员,主要从事高粱作物栽培技术研究。E-mail:nkycmj@yeah.net。
通信作者:邓小锋,博士,助理研究员,主要从事高粱育种研究。E-mail:dixifor@yeah.net。
更新日期/Last Update: 2022-03-05