[1]江西省人民政府. 江西省人民政府印发关于加快农业结构调整行动计划的通知[EB/OL]. (2017-12-24)[2020-02-10]. http://nync.jiangxi.gov.cn/art/2017/12/29/art_28314_1585128.html.
[2]赵辉,米鸿涛,杜子璇. 基于AHP的模糊综合评判在茶叶气候种植区划中的应用[J]. 气象科技,2013,41(6):1134-1137.
[3]陶瑶,杨爱萍,段里成,等. 2018年春霜冻对江西省北部茶叶生产影响的定量评估[J]. 气象与减灾研究,2019,42(1):70-74.
[4]江西省茶叶协会. 江西省春茶冻害灾情[J]. 茶世界,2010(5):37.
[5]郑志文. 晚霜冻对浮梁县春茶的影响及气象灾害风险管理建议[J]. 江西农业,2019(6):55-56.
[6]程丹. 婺源县第一批春茶采摘遭受倒春寒肆虐[EB/OL]. (2018-04-11)[2020-01-10]. https://mp.weixin.qq.com/s/5pRLvEFHiDmvEQ_kSGFrMw.
[7]徐金勤,邱新法,曾燕,等. 浙江茶叶春霜冻害的气候变化特征分析[J]. 江苏农业科学,2018,46(22):101-105.
[8]王学林. 江南茶区春霜冻风险评价技术研究[D]. 南京:南京信息工程大学,2015.
[9]刘瑞娜,陈鹏. 安徽省茶叶春霜冻发生规律及风险分布[J]. 气象科技,2016,44(6):1060-1065.
[10]王俊,蒯志敏,张旭晖. 江苏省春霜冻发生时空演变规律及其对春茶的影响[J]. 中国农业气象,2011,32(增刊1):222-226.
[11]吴杨,金志凤,叶建刚,等. 浙江茶树春霜冻发生规律及其与太平洋海温的遥相关分析[J]. 中国农业气象,2014,35(4):434-439.
[12]胡波,金志凤,严甲真,等. 基于FastICA的浙江省茶叶早春霜冻时空分布特征[J]. 中国农学通报,2014,30(10):190-196.
[13]金志凤,胡波,严甲真,等. 浙江省茶叶农业气象灾害风险评价[J]. 生态学杂志,2014,33(3):771-777.
[14]李仁忠,金志凤,杨再强,等. 浙江省茶树春霜冻害气象指标的修订[J]. 生态学杂志,2016,35(10):2659-2666.
[15]盛任,万鲁河. 乌伊岭国家级自然保护区植被覆盖演变及其对气候突变的响应[J]. 生态学报,2019,39(9):3243-3256.
[16]姜燕敏,金志凤,李仁忠,等. 浙南春茶早春霜冻的时空分布特征[J]. 气象科技,2016,44(6):1066-1070.
[17]丁丽佳,郑有飞,王春林,等. 潮州市近53年气温变化特征[J]. 气象科技,2011,39(1):44-49.
[18]张旭晖,居为民,蒯志敏,等. 江苏春季霜冻气候变化特征及其未来可能变化趋势[J]. 大气科学学报,2013,36(6):666-673.
[19]孙圣杰,李栋梁. 气候变暖背景下西太平洋副热带高压体形态变异及热力原因[J]. 气象学报,2019,77(1):100-110.
[20]李柏贞,孔萍,占明锦,等. 1961—2015年江西省气温变化特征分析[J]. 气象与减灾研究,2017,40(3):184-192.
[1]姚二民,张超帅,李晓,等.多孔淀粉茶叶包埋颗粒在卷烟过滤器中的应用[J].江苏农业科学,2014,42(12):311.
Yao Ermin,et al.Application of hollow porous starch and tea embedded particle in cigarette holder[J].Jiangsu Agricultural Sciences,2014,42(15):311.
[2]王多娇,周玮,颜春荣,等.快速SPE-UPLC-MS/MS同时测定茶叶中的5种农药残留[J].江苏农业科学,2014,42(10):280.
Wang Duojiao,et al.Simultaneous determination of five pesticide residues in tea by rapid SPE combined with UPLC-MS/MS[J].Jiangsu Agricultural Sciences,2014,42(15):280.
[3]何辰宇,李蓓蓓,杨菲.高温干旱对茶叶生产的影响及应对措施[J].江苏农业科学,2016,44(04):215.
He Chenyu,et al.Effects of high temperature and drought on tea production and the corresponding measures[J].Jiangsu Agricultural Sciences,2016,44(15):215.
[4]史娟,李江.微波辅助消解火焰原子吸收光谱法测定茶叶中的微量元素[J].江苏农业科学,2015,43(11):380.
Shi Juan,et al.Determination of trace elements in tea by microwave digestion and FAAS[J].Jiangsu Agricultural Sciences,2015,43(15):380.
[5]刘荣森,赵文善,张长水.铁氰化钾分光光度法测定茶叶中的铁[J].江苏农业科学,2015,43(09):344.
Liu Rongsen,et al.Determination of iron contents in tea by potassium ferricyanide spectrophotometry[J].Jiangsu Agricultural Sciences,2015,43(15):344.
[6]吴燕,吴瑞梅,黄双根,等.茶叶中多菌灵残留的SERS快速检测[J].江苏农业科学,2015,43(09):338.
Wu Yan,et al.Rapid detection of carbendazim residues in tea by surface-enhanced raman spectroscopy[J].Jiangsu Agricultural Sciences,2015,43(15):338.
[7]李晓,郭贞贞,姚二民,等.茶叶接装胶对烟气香味成分的影响[J].江苏农业科学,2014,42(06):287.
Li Xiao,et al.Effect of tea adhesive on aromatic components of cigarette smoke[J].Jiangsu Agricultural Sciences,2014,42(15):287.
[8]邹盛勤,姜琼.RP-HPLC测定茶叶中没食子酸、儿茶素和表儿茶素的含量[J].江苏农业科学,2014,42(07):322.
Zou Shengqin,et al.Determination of gallic acid,catechin,and L-epicatechin contents in Chinese tea by RP-HPLC[J].Jiangsu Agricultural Sciences,2014,42(15):322.
[9]林永锋,胡永光,李萍萍,等.有机肥及氮磷钾肥施用量与茶叶产量的关系模型及其解析[J].江苏农业科学,2014,42(09):207.
Lin Yongfeng,et al.Relational model between tea yield and application rates of organic fertilizer and nitrogen,phosphorus and potassium fertilizer[J].Jiangsu Agricultural Sciences,2014,42(15):207.
[10]王海斌,叶江华,陈晓婷,等.不同树龄铁观音茶树的浓香型茶叶品质比较分析[J].江苏农业科学,2016,44(10):230.
Wang Haibin,et al.Quality comparison of strong-aroma teas processed by Tieguanyin tea trees with different ages[J].Jiangsu Agricultural Sciences,2016,44(15):230.
[11]徐金勤,邱新法,曾燕,等.浙江茶叶春霜冻害的气候变化特征分析[J].江苏农业科学,2018,46(22):101.
Xu Jinqin,et al.Analysis of climate change characteristics of spring frost injury of tea in Zhejiang Province[J].Jiangsu Agricultural Sciences,2018,46(15):101.