|本期目录/Table of Contents|

[1]荣欢,任师杰,汪梓坪,等.植物NAC转录因子的结构及功能研究进展[J].江苏农业科学,2020,48(18):44-53.
 Rong Huan,et al.Research progress on structure and function of plant NAC transcription factors[J].Jiangsu Agricultural Sciences,2020,48(18):44-53.
点击复制

植物NAC转录因子的结构及功能研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第18期
页码:
44-53
栏目:
专论与综述
出版日期:
2020-09-20

文章信息/Info

Title:
Research progress on structure and function of plant NAC transcription factors
作者:
荣欢 任师杰 汪梓坪 王飞 周勇
江西农业大学生物科学与工程学院,江西南昌 330045
Author(s):
Rong Huanet al
关键词:
植物NAC转录因子生长发育胁迫NAC生理功能
Keywords:
-
分类号:
S184
DOI:
-
文献标志码:
A
摘要:
NAC(NAM、ATAF1/2、CUC1/2)转录因子是植物特有的一类转录因子家族,在植物生长发育、生物及非生物胁迫反应中具有重要的调控作用。NAC蛋白的N端均存在1个高度保守的NAC结构域,而C端是变化的转录调控区。通过总结前人的研究进展,综述NAC转录因子在植物分生组织和器官边界的形成、根的发育、植物细胞次生壁的生长、植物衰老、激素调控和胁迫反应等过程中的重要调控作用,指出今后NAC转录因子的研究方向。
Abstract:
-

参考文献/References:

[1]Singh K B,Foley R C,Onate-Sanchez L. Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology,2002,5(5):430-436.
[2]Chen W J,Tong Z. Networks of transcription factors with roles in environmental stress response[J]. Trends in Plant Science,2004,9(12):591-596.
[3]Huang G T,Ma S L,Bai L P,et al. Signal transduction during cold,salt,and drought stresses in plants[J]. Molecular Biology Reports,2012,39(2):969-987.
[4]Jin P,Zhang H,Kong L,et al. PlantTFDB 3.0:a portal for the functional and evolutionary study of plant transcription factors[J]. Nucleic Acids Research,2014,42:1182-1187.
[5]Souer E,Vanhouwelingen A,Kloos D,et al. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell,1996,85(2):159-170.
[6]Nakashima K,Takasaki H,Mizoi J,et al. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2012,1819(2):97-103.
[7]Shao H B,Wang H Y,Tang X L. NAC transcription factors in plant multiple abiotic stress responses:progress and prospects[J]. Frontiers in Plant Science,2015,6:902.
[8]Nuruzzaman M,Manimekalai R,Sharoni A M,et al. Genome-wide analysis of NAC transcription factor family in rice[J]. Gene,2010,465(1/2):30-44.
[9]Ooka H,Satoh K,Doi K,et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Research:an International Journal for Rapid Publication of Reports on Genes and Genomes,2003,10(6):239-247.
[10]Fang Y J,Jun Y,Xie K B,et al. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice[J]. Molecular Genetics and Genomics,2008,280(6):547-563.
[11]Hu R B,Guang Q,Kong Y Z,et al. Comprehensive analysis of NAC domain transcription factor gene family in populus trichocarpa[J]. BMC Plant Biology,2010,10(1):145.
[12]Dung T L,Nishiyama R,Watanabe Y,et al. Genome-wide survey and expression analysis of the Plant-Specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA Research,2011,18(4):263-276.
[13]Su H Y,Zhang S Z,Yuan X W,et al. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple[J]. Plant Physiology and Biochemistry,2013,71:11-21.
[14]Singh A K,Sharma V,Pal A K,et al. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.)[J]. DNA Research,2013,20(4):403-423.
[15]Shang H H,Li W,Zou C S,et al. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr: chromosomal location,structure,phylogeny,and expression patterns[J].J Integr Plant Biol,2013,55(7):663-676.
[16]Heng S,Hu M L,Li J Y,et al. Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton[J]. BMC Plant Biology,2018,18(1):150.
[17]Puranik S,Sahu P P,Mandal S N,et al. Comprehensive genome-wide survey,genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.)[J]. PLoS One,2013,8(5):e64594.
[18]Nian W,Yu Z,Xin H P,et al. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera[J]. Plant Cell Reports,2013,32(1):61-75.
[19]Viswanathan S,Jagannadham P K,Parameswaran C,et al. NAC transcription factor genes:genome-wide identification,phylogenetic,motif and cis-regulatory element analysis in pigeonpea[Cajanus cajan (L.) Millsp.][J]. Molecular Biology Reports,2014,41(12):7763-7773.
[20]Liu T K,Song X M,Duan W K,et al. Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage[J]. Plant Molecular Biology Reporter,2014,32(5):1041-1056.
[21]Shiriga K,Sharma R,Kumar K,et al. Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize[J]. Meta Gene,2014,2:407-417.
[22]Cenci A,Guignon V,Roux N,et al. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots[J]. Plant Molecular Biology,2014,85(1/2):63-80.
[23]Ha C V,Esfahani M N,Watanabe Y,et al. Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development,dehydration and ABA treatments[J]. PLoS One,2014,9(12):e114107.
[24]Wei H,Wei Y X,Xia Z Q,et al. Genome-wide identification and expression analysis of the NAC transcription factor family in cassava[J]. PLoS One,2015,10(8):e0136993.
[25]Lei L,Song L,Wang Y J,et al. Genome-wide analysis and expression patterns of the NAC transcription factor family in Medicago truncatula[J]. Physiology and Molecular Biology of Plants,2017,23(2):343-356.
[26]Su H Y,Zhang S Z,Yin Y L,et al. Genome-wide analysis of NAM-ATAF1,2-CUC2 transcription factor family in Solanum lycopersicum[J]. Journal of Plant Biochemistry and Biotechnology,2015,24(2):176-183.
[27]Wu Z Y,Xu X Q,Xiong W D,et al. Genome-wide analysis of the NAC gene family in physic nut (Jatropha curcas L.)[J]. PLoS One,2015,10(6):e0131890.
[28]Jun Y,Zhang L H,Bo S,et al. Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon[J]. PLoS One,2015,10(3):e0122027.
[29]Zhuo X K,Zheng T C,Zhang Z Y,et al. Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume[J]. Genes,2018,9(10):494.
[30]Ma J H,Tong D D,Zhang W L,et al. Identification and analysis of the NAC transcription factor family in Triticum urartu[J]. Yi Chuan,2016,38(3):243-253.
[31]Guérin C,Roche J,Allard V,et al. Genome-wide analysis,expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.)[J]. PLoS One,2019,14(3):e0213390.
[32]Saidi M N,Mergby D,Brini F . Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum)[J]. Plant Physiology & Biochemistry,2017,112:117-128.
[33]Wang Y X,Liu Z W,Wu Z J,et al. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant[Camellia sinensis (L.) O. Kuntze][J]. PLoS One,2016,11(11):e0166727.
[34]Karanja B K,Xu L,Wang Y,et al. Genome-wide characterization and expression profiling of NAC transcription factor genes under abiotic stresses in radish(Raphanus sativus L.)[J].PeerJ,2017,5:e4172.
[35]Wei S W,Gao L W,Zhang Y D,et al. Genome-wide investigation of the NAC transcription factor family in melon (Cucumis melo L.) and their expression analysis under salt stress[J]. Plant Cell Reports,2016,35(9):1827-1839.
[36]Baranwal V K,Khurana P. Genome-wide analysis,expression dynamics and varietal comparison of NAC gene family at various developmental stages in Morus notabilis[J]. Molecular Genetics and Genomics,2016,291(3):1305-1317.
[37]Liu M Y,Ma Z T,Sun W J,et al. Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum)[J]. BMC Genomics,2019,20(1):113.
[38]Wei L,Li X X,Chao J T,et al. NAC family transcription factors in tobacco and their potential role in regulating leaf senescence[J]. Frontiers in Plant Science,2018,9:1900.
[39]Hussain R M,Mohammed A,Xing F,et al. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars[J]. BMC Plant Biology,2017,17(1):55.
[40]Zhang X M,Yu H J,Sun C,et al. Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus[J]. Plant Physiology and Biochemistry,2017,113:98-109.
[41]Liu X W,Wang T,Bartholomew E S,et al. Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber(Cucumis sativus L.)[J].Hortic Res,2018,5(1):31.
[42]Zhang Y J,Li D H,Wang Y,et al. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum[J]. PLoS One,2018,13(6):e0199262.
[43]Feng L,Guo X H,Liu J X,et al. Genome-wide identification,characterization,and expression analysis of the NAC transcription factor in Chenopodium quinoa[J]. Genes,2019,10(7):500.
[44]Diao W P,Snyder J,Wang S B,et al. Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.):chromosome location,phylogeny,structure,expression patterns,cis-elements in the promoter,and interaction network[J]. International Journal of Molecular Sciences,2018,19(4):1028.
[45]Moyano E,Martínez-Rivas F J,Blanco-Portales R,et al. Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits[J]. PLoS One,2018,13(5):e0196953.
[46]Gong X,Zhao L Y,Song X F,et al. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear (Pyrus bretschneideri)[J]. BMC Plant Biology,2019,19(1):161.
[47]Song C,Xin L,Zhang D W,et al. Genome-wide analysis of NAC gene family in Betula pendula[J]. Forests,2019,10(9):741.
[48]He Q,Liu Y H,Zhang M,et al. Genome-wide identification and expression analysis of the NAC transcription factor family in pineapple[J]. Tropical Plant Biology,2019,12(4):255-267.
[49]Olsen A N,Ernst H A,Leggio L L,et al. Preliminary crystallographic analysis of the NAC domain of ANAC,a member of the plant-specific NAC transcription factor family[J]. Acta Crystallographica Section D-Biological Crystallography,2004,60(1):112-115.
[50]Ernst H A,Olsen A N,Larsen S,et al. Structure of the conserved domain of ANAC,a member of the NAC family of transcription factors[J]. EMBO Reports,2004,5(3):297-303.
[51]Kim Y S,Kim S Y,Park J E,et al. A Membrane-bound NAC transcription factor regulates cell division in Arabidopsis[J]. The Plant Cell,2006,18(11):3132-3144.
[52]Ya-Ni C,Slabaugh E,Brandizzi F. Membrane-tethered transcription factors in Arabidopsis thaliana:novel regulators in stress response and development[J]. Current Opinion in Plant Biology,2008,11(6):695-701.
[53]Chen Q F,Wang Q,Xiong L Z,et al. A structural view of the conserved domain of rice stress-responsive NAC1[J]. Protein & Cell,2011,2(1):55-63.
[54]Duval M,Hsieh T F,Kim S Y,et al. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily[J]. Plant Molecular Biology,2002,50(2):237-248.
[55]Aida M,Ishida T,Fukaki H,et al. Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant[J]. The Plant Cell,1997,9(6):841-857.
[56]Ken-Ichiro H,Takada S,Tasaka M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation[J]. The Plant Journal,2003,36(5):687-696.
[57]Takada S,Hibara K,Ishida T,et al. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation[J]. Development (Cambridge,England),2001,128(7):1127-1135.
[58]Ori N,Eshed Y,Chuck G,et al. Mechanisms that control knox gene expression in the Arabidopsis shoot[J]. Development (Cambridge,England),2000,127(24):5523-5532.
[59]Takeda S,Hanano K,Kariya A,et al. CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3,two members of the ALOG gene family,in shoot organ boundary cells[J]. Plant Journal,2011,66(6):1066-1077.
[60]Ken-Ichiro H,Karim M R,Takada S,et al. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation[J]. The Plant Cell,2006,18(11):2946-2957.
[61]Vroemen C W,Mordhorst A P,Albrecht C,et al. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis[J]. Plant Cell,2003,15(7):1563-1577.
[62]Zimmermann R,Werr W. Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues from Zea mays L.[J]. Plant Molecular Biology,2005,58(5):669-685.
[63]Xie Q,Frugis G,Colgan D F,et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J]. Genes & Development,2000,14(23):3024-3036.
[64]Qi X,Hui-Shan G,Dallman G,et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals[J]. Nature,2002,419(693):167-170.
[65]Mao C,He J,Liu L,et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development[J]. Plant Biotechnology Journal,2019,18(2):429-442.
[66]He X J,Mu R L,Cao W H,et al. AtNAC2,a transcription factor downstream of ethylene and auxin signaling pathways,is involved in salt stress response and lateral root development[J]. The Plant Journal,2005,44(6):903-916.
[67]Xi D,Xu C,Wang Y X,et al. Arabidopsis ANAC092 regulates auxin-mediated root development by binding to the ARF8 and PIN4 promoters[J]. Journal of Integrative Plant Biology,2019,61(9):1015-1031.
[68]Chen D,Chai S C,Mcintyre C L,et al. Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length,biomass and drought tolerance[J]. Plant Cell Reports,2018,37(2):225-237.
[69]Hegedus D,Yu M,Baldwin D,et al. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress[J]. Plant Molecular Biology,2003,53(3):383-397.
[70]Hao Y J,Wei W,Song Q X,et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. The Plant Journal,2011,68(2):302-313.
[71]Yang X F,Kim M Y,Ha J M,et al. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants[J]. Frontiers in Plant Science,2019,10:1036.
[72]Han X M,Feng Z Q,Xing D,et al. Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis[J]. BMC Plant Biology,2015,15(1):208.
[73]Mitsuda N,Seki M,Shinozaki K,et al. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence[J]. The Plant Cell,2005,17(11):2993-3006.
[74]Mitsuda N,Iwase A,Hiroyuki Y,et al. NAC transcription factors,NST1 and NST3,are key regulators of the formation of secondary walls in woody tissues of Arabidopsis[J]. The Plant Cell,2007,19(1):270-280.
[75]Mitsuda N,Ohme-Takagi M. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity[J]. The Plant Journal,2008,56(5):768-778.
[76]Zhao X,Gallego-Giraldo L,Wang H Z,et al. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula[J]. The Plant Journal,2010,63(1):100-114.
[77]Zhong R Q,Demura T,Ye Z H. SND1,a NAC domain transcription factor,is a key regulator of secondary wall synthesis in fibers of Arabidopsis[J]. The Plant Cell,2006,18(11):3158-3170.
[78]Zhong R Q,Richardson E A,Ye Z H. Two NAC domain transcription factors,SND1 and NST1,function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis[J]. Planta,2007,225(6):1603-1611.
[79]Yamaguchi M,Mitsuda N,Ohtani M,et al. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation[J]. The Plant Journal,2011,66(4):579-590.
[80]Zhong R Q,Richardson E A,Ye Z H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis[J]. The Plant Cell,2007,19(9):2776-2792.
[81]Mccarthy R L,Zhong R,Ye Z H. MYB83 is a direct target of SND1 and Acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. Plant and Cell Physiology,2009,50(11):1950-1964.
[82]Zhou J L,Lee C,Zhong R Q,et al. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis[J]. The Plant Cell,2009,21(1):248-266.
[83]Zhong R Q,Lee C,Zhou J L,et al. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. The Plant Cell,2008,20(10):2763-2782.
[84]Zhong R,Lee C,Ye Z H. Functional characterization of poplar wood-associated NAC domain transcription factors[J]. Plant Physiology,2010,152(2):1044-1055.
[85]Ohtani M,Nishikubo N,Bo X,et al. A NAC domain protein family contributing to the regulation of wood formation in poplar[J]. The Plant Journal,2011,67(3):499-512.
[86]Zhong R,Lee C,Mccarthy R L,et al. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors[J]. Plant and Cell Physiology,2011,52(10):1856-1871.
[87]Jae-Heung K,Seung H Y,Andrew H P,et al. ANAC012,a member of the plant-specific NAC transcription factor family,negatively regulates xylary fiber development in Arabidopsis thaliana[J]. The Plant Journal,2007,50(6):1035-1048.
[88]Zhao C S,Avci U,Emily H G,et al. XND1,a member of the NAC domain family in Arabidopsis thaliana,negatively regulates lignocellulose synthesis and programmed cell death in xylem[J]. The Plant Journal,2007,53(3):425-436.
[89]Uauy C,Distelfeld A,Fahima T,et al. A NAC gene regulating senescence improves grain protein,Zinc,and Iron content in wheat[J]. Science,2006,314(583):1298-1301.
[90]Guo Y F,Gan S S. AtNAP,a NAC family transcription factor,has an important role in leaf senescence[J]. The Plant Journal:for Cell and Molecular Biology,2006,46(4):601-612.
[91]Zhang K W,Gan S S. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves[J]. Plant Physiology,2012,158(2):961-969.
[92]Liang C Z,Wang Y Q,Zhu Y N,et al. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(27):10013-10018.
[93]Yong Z,Huang W F,Li L,et al. Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence[J]. BMC Plant Biology,2013,13(1):132.
[94]Chen Y X,Kai Q,Kuai B K,et al. Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis‘Viridiflavus’)[J]. Physiologia Plantarum,2011,142(4):361-371.
[95]Cao S X,Zhang Z B,Wang C H,et al. Identification of a novel melon transcription factor CmNAC60 as a potential regulator of leaf senescence[J]. Genes,2019,10(8):584.
[96]Kai F,Bibi N,Gan S S,et al. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum[J]. Journal of Experimental Botany,2015,66(15):4669-4682.
[97]Kim J H,Woo H R,Kim J,et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis[J]. Science,2009,323(5917):1053-1057.
[98]Balazadeh S,Siddiqui H,Allu A D,et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence[J]. The Plant Journal:for Cell and Molecular Biology,2010,62(2):250-264.
[99]Mahmood K,El-Kereamy A,Sung-Hyun K,et al. ANAC032 positively regulates age-dependent and stress-induced senescence in Arabidopsis thaliana[J]. Plant and Cell Physiology,2016,57(10):2029-2046.
[100]Sakuraba Y,Su-Hyun H,Sang-Hwa L,et al. Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription[J]. Plant Cell Reports,2016,35(1):155-166.
[101]Fan Z Q,Tan X L,Chen J W,et al. BrNAC055,a novel transcriptional activator,regulates leaf senescence in Chinese flowering cabbage by modulating reactive oxygen species production and chlorophyll degradation[J]. Journal of Agricultural and Food Chemistry,2018,66(36):9399-9408.
[102]Ma X M,Zhang Y J,Veronika T,et al. The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato[J]. Plant Physiology,2018,177(3):1286-1302.
[103]Sakuraba Y,Piao W L,Lim J H,et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle[J]. Plant and Cell Physiology,2015,56(12):2325-2339.
[104]Zhu Z G,Li G R,Yan C H,et al. DRL1,encoding a NAC transcription factor,is involved in leaf senescence in grapevine[J]. International Journal of Molecular Sciences,2019,20(11):2678.
[105]Jensen M K,Lindemose S,Masi F D,et al. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana[J]. FEBS Open Bio,2013,3(1):321-327.
[106]Yang S D,Seo P J,Yoon H K,et al. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes[J]. The Plant Cell,2011,23(6):2155-2168.
[107]Fujita M,Fujita Y,Maruyama K,et al. A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant Journal,2004,39(6):863-876.
[108]Hu H,You J,Fang Y,et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Molecular Biology,2008,67(1/2):169-181.
[109]Chen X,Wang Y F,Lv B,et al. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway[J]. Plant and Cell Physiology,2014,55(3):604-619.
[110]Lu P L,Chen N Z,An R,et al. A novel drought-inducible gene,ATAF1,encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis[J]. Plant Molecular Biology,2007,63(2):289-305.
[111]Yoshii M,Yamazaki M,Rakwal R,et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. The Plant Journal,2010,61(5):804-815.
[112]Xu C,Lu S C,Wang Y F,et al. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice[J]. The Plant Journal,2015,82(2):302-314.
[113]Kim S G,Lee A K,Yoon H K,et al. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination[J]. The Plant Journal,2008,55(1):77-88.
[114]Hu H,Dai M,Yao J,et al. Overexpressing a NAM,ATAF,and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(35):12987-12992.
[115]Nakashima K,Tran L S,Van Nguyen D,et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. The Plant Journal,2007,51(4):617-630.
[116]Zheng X N,Chen B,Lu G J,et al. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochemical and Biophysical Research Communications,2009,379(4):985-989.
[117]Hong Y B,Zhang H J,Huang L,et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice[J]. Frontiers in Plant Science,2016,7:4.
[118]Shen J B,Lv B,Luo L Q,et al. The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice[J]. Scientific Reports,2017,7(1):40641.
[119]Liu Y C,Jie S,Wu Y R. Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice[J]. Journal of Plant Research,2016,129(5):955-962.
[120]Rahman H,Ramanathan V,Nallathambi J,et al. Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice[J]. BMC Biotechnology,2016,16(S1):35.
[121]Guan H R,Xin L,Fei N,et al. OoNAC72,a NAC-Type Oxytropis ochrocephala transcription factor,conferring enhanced drought and salt stress tolerance in Arabidopsis[J]. Frontiers in Plant Science,2019,10:890.
[122]Pang X Y,Xue M,Ren M Y,et al. Ammopiptanthus mongolicus stress-responsive NAC gene enhances the tolerance of transgenic Arabidopsis thaliana to drought and cold stresses[J]. Genetics and Molecular Biology,2019,42(3):624-634.
[123]Yong Y,Zhang Y,Lyu Y. A Stress-Responsive NAC transcription factor from tiger lily (LlNAC2) interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis[J]. International Journal of Molecular Sciences,2019,20(13):3225.
[124]Borgohain P,Saha B,Agrahari R,et al. SlNAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism[J]. Protoplasma,2019,256(4):1065-1077.
[125]He K,Zhao X,Chi X Y,et al. A novel Miscanthus NAC transcription factor MlNAC10 enhances drought and salinity tolerance in transgenic Arabidopsis[J]. Journal of Plant Physiology,2019,233:84-93.
[126]Yang X W,Kang H,Chi X Y,et al. Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis[J]. Plant Science,2018,277:229-241.
[127]Cao H S,Li W,Muhammad A N,et al. Ectopic expression of pumpkin NAC transcription factor CmNAC1 improves multiple abiotic stress tolerance in Arabidopsis[J]. Frontiers in Plant Science,2017,8:2052.
[128]Lei H,Hong Y B,Zhang H J,et al. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biology,2016,16(1):203.
[129]He L,Shi X X,Wang Y M,et al. Arabidopsis ANAC069 binds to C[A/G]CG[T/G]sequences to negatively regulate salt and osmotic stress tolerance[J]. Plant Mol Biol, 2017,93(4/5):369-387.
[130]An J P,Rui L,Qu F J,et al. An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway[J]. Journal of Plant Physiology,2018,221:74-80.
[131]Lin H,Jing B,Xu J Y,et al. Novel maize NAC transcriptional repressor ZmNAC071 confers enhanced sensitivity to ABA and osmotic stress by downregulating stress-responsive genes in transgenic Arabidopsis[J]. Journal of Agricultural and Food Chemistry,2019,67(32):8905-8918.
[132]Xin H,Zhu L F,Lian X,et al. GhATAF1,a NAC transcription factor,confers abiotic and biotic stress responses by regulating phytohormonal signaling networks[J]. Plant Cell Reports,2016,35(10):2167-2179.
[133]Fang L C,Su L Y,Sun X M,et al. Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis[J]. Journal of Experimental Botany,2016,67(9):2829-2845.
[134]Shahnejat-Bushehri S,Tarkowska D,Sakuraba Y,et al. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling[J]. Nature Plants,2016,2(3):16013.
[135]Lin R M,Zhao W S,Meng X B,et al. Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea[J]. Plant Science,2007,172(1):120-130.
[136]Wang X E,Basnayake B S,Zhang H J,et al. The Arabidopsis ATAF1,a NAC transcription factor,is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens[J]. Molecular Plant-Microbe Interactions,2009,22(10):1227-1238.
[137]Delessert C,Kazan K,Wilson I W,et al. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis[J]. The Plant Journal,2005,43(5):745-757.
[138]Chen Y J,Perera V,Christiansen M W,et al. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew[J]. Plant Molecular Biology,2013,83(6):577-590.
[139]Jensen M K,Jesper H R,Gregersen P L,et al. The HvNAC6 transcription factor:a positive regulator of penetration resistance in barley and Arabidopsis[J]. Plant Molecular Biology,2007,65(1/2):137-150.
[140]Peng X J,Wang Q,Yu W,et al. A maize NAC transcription factor,ZmNAC34,negatively regulates starch synthesis in rice[J]. Plant Cell Reports,2019,38(12):1473-1484.
[141]Zhang Z Y,Dong J Q,Chen J,et al. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(23):11223-11228.
[142]Li W J,Xue H,Yi C,et al. A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal[J]. New Phytologist,2020,225(4):1667-1680.
[143]Gao Y,Wei W,Zhao X D,et al. A NAC transcription factor,NOR-like1,is a new positive regulator of tomato fruit ripening[J]. Horticulture Research,2018,5(1):75.
[144]Carrasco-Orellana C,Stappung Y,Mendez-Yaez A,et al. Characterization of a ripening-related transcription factor FcNAC1 from Fragaria chiloensis fruit[J]. Scientific Reports,2018,8(1):10524.
[145]Jahan M A,Harris B,Lowery M,et al. The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean[J]. BMC Genomics,2019,20(1):149.
[146]Guo S Y,Dai S J,Prashant K S,et al. A membrane-bound NAC-like transcription factor OsNTL5 represses the flowering in Oryza sativa[J]. Frontiers in Plant Science,2018,9:555.
[147]Zhang H H,Cui X Y,Guo Y X,et al. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time[J]. Plant Molecular Biology,2018,98(6):471-493.
[148]Bin Z,Huo D A,Hong X X,et al. The Salvia miltiorrhiza NAC transcription factor SmNAC1 enhances Zinc content in transgenic Arabidopsis[J]. Gene,2019,688:54-61.

相似文献/References:

[1]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(18):362.
[2]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(18):349.
[3]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
 Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(18):292.
[4]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
 Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(18):348.
[5]郭义红,孙威江,林伟东,等.植物DNA条形码鉴定研究进展[J].江苏农业科学,2016,44(07):19.
 Guo Yihong,et al.Research progress of plant Identification by DNA barcoding[J].Jiangsu Agricultural Sciences,2016,44(18):19.
[6]陈露,杨立明,罗玉明.植物ICE蛋白基因家族的系统进化分析[J].江苏农业科学,2016,44(02):42.
 Chen Lu,et al.Phylogenetic analysis of ICE protein gene family in plants[J].Jiangsu Agricultural Sciences,2016,44(18):42.
[7]韩俊杰,王昊龙,李卫华.关联分析及其在不同分子标记中的应用综述[J].江苏农业科学,2016,44(02):13.
 Han Junjie,et al.Correlation analysis and its application in different molecular markers[J].Jiangsu Agricultural Sciences,2016,44(18):13.
[8]白晓龙,杨春和,顾卫兵,等.不同植物人工湿地净化模拟生活污水效果[J].江苏农业科学,2014,42(04):326.
 Bai Xiaolong,et al.Purifying effects of artificial wetlands with different vegetation systems on synthetic domestic sewage[J].Jiangsu Agricultural Sciences,2014,42(18):326.
[9]李海波,王鹏飞,李英华.用于城市径流净化的岸堤漫流技术的植物与基质的组配方式[J].江苏农业科学,2015,43(07):357.
 Li Haibo,et al.Equipping way of plants and substrates of embankment flowing technology used for urban runoff purification[J].Jiangsu Agricultural Sciences,2015,43(18):357.
[10]闻婧,孟力力,张俊,等.弱光对植物光合特性影响的研究进展[J].江苏农业科学,2014,42(07):22.
 Wen Jing,et al.Research progress on photosynthetic characteristics of plant under weak light[J].Jiangsu Agricultural Sciences,2014,42(18):22.

备注/Memo

备注/Memo:
收稿日期:2019-10-31
基金项目:江西省教育厅科技计划(编号:GJJ180172、GJJ160387)。
作者简介:荣欢(1998—),男,江西萍乡人,主要从事生物科学与生物技术研究。E-mail:962610432@qq.com。
通信作者:周勇,博士,讲师,主要从事植物功能基因组学研究,E-mail:yzhoujxan@163.com;王飞,博士,副教授,主要从事微生物资源与蛋白质工程研究,E-mail:wangfei179@163.com。
更新日期/Last Update: 2020-09-20