[1]Xiong L,Schumaker K S,Zhu J K. Cell signaling during cold,drought,and salt stress[J]. The Plant Cell,2002,14:165-183.
[2]Nakashima K,Ito Y,Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses[J]. Plant Physiology,2009,149:88-95.
[3]Todaka D,Shinozaki K,Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants[J]. Frontiers in Plant Science,2015(6):84.
[4]Wu J D,Jiang Y L,Liang Y N,et al. Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants[J]. Plant Physiology and Biochemistry,2019,137:179-188.
[5]Djemal R,Khoudi H. The barley SHN1-type transcription factor HvSHN1 imparts heat,drought and salt tolerances in transgenic tobacco[J]. Plant Physiology and Biochemistry,2021,164:44-53.
[6]Yarra R,Wei W. The NAC-type transcription factor GmNAC20 improves cold,salinity tolerance,and lateral root formation in transgenic rice plants[J]. Funct Integr Genomics,2021,21(3/4):473-487.
[7]He Q,Cai H Y,Bai M Y,et al. A soybean bZIP transcription factor GmBZIP19 confers multiple biotic and abiotic stress responses in plant[J]. International Journal of Molecular Science,2020,21(13):4701.
[8]Ye H,Qiao L Y,Guo H Y,et al. Genome-Wide identification of wheat WRKY gene family reveals that TaWRKY75-A is referred to drought and salt resistances[J]. Frontiers in Plant Science,2021,12:663118.
[9]Hao Y Q,Zong X M,Ren P,et al. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis[J]. Int J Mol Sci,2021,22(13):7152.
[10]Roig-Villanova I,Bou-Torrent J,Galstyan A,et al. Interaction of shade avoidance and auxin responses:a role for two novel atypical bHLH proteins[J]. EMBO J,2007,26(22):4756-4567.
[11]Bailey P C,Martin C,Toledo-Ortiz G,et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana[J]. Plant Cell. 2003,15(11);2497-2502.
[12]Li X X,Duan X P,Jiang H X,et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis[J]. Plant Physiol,2006,141(4):1167-1184.
[13]Zhang Z S,Chen J,Liang C L,et al. Genome-wide identification and characterization of the bHLH transcription factor family in pepper (Capsicum annuum L.)[J]. Frontiers in Genetics,2020,11:1156.
[14]Li J,Wang T,Han J,et al. Genome-wide identification and characterization of cucumber bHLH family genes and the functional characterization of CsbHLH041 in NaCl and ABA tolerance in Arabidopsis and cucumber[J]. BMC Plant Biol,2020,20:272.
[15]Kavas M,Baloglu M C,Atabay E S,et al. Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration[J]. Mol Genet Genomic,2016,291:129-143.
[16]Feller A,Machemer K,Braun E L,et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant J,2011,66(1):94-116.
[17]Kong Q,Pattanaik S,Feller A,et al L. Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R[J]. Proceedings of the National Academy of Sciences,2012,109(30):E2091-E2097.
[18]Pires N,Dolan L. Origin and diversification of basic-helix-loop-helix proteins in plants[J]. Molecular Biology and Evolution,2010,27(4):862-874.
[19]Filiz E,Vatansever R,Ozyigit I I. Dissecting a co-expression network of basic helix-loop-helix (bHLH) genes from phosphate (Pi)-starved soybean (Glycine max)[J]. Plant Gene,2017,9:19-25.
[20]Pires N,Dolan L. Origin and diversification of basic-helix-loop-helix proteins in plants[J]. Molecular Biology and Evolution,2010,27(4):862-874.
[21]Murre C,Bain G,van Dijk M A,et al. Structure and function of helix-loop-helix proteins[J]. Biochim Biophys Acta-Gene Struct Expr,1994,1218(2):129-135.
[22]Li H M,Sun J Q,Xu Y X,et al. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis[J]. Plant Mol Biol,2007,65(5):655-665.
[23]Le H R,Castelain M,Chakraborti D,et al. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana[J]. Physiol Plant,2017,160(3):312-327.
[24]Dong Y,Wang C P,Han X,et al. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development,photosynthesis and growth in Arabidopsis[J]. Biochem Biophys Res Commun,2014,450(1):453-458.
[25]Yao P F,Li C L,Zhao X R,et al. overexpression of a tartary buckwheat gene,FtbHLH3,enhances drought/oxidative stress tolerance in transgenic Arabidopsis[J]. Front Plant Sci,2017,8:625.
[26]Zhao Q,Fan Z,Qiu L,et al. MdbHLH130,an apple bHLH transcription factor,confers water stress resistance by regulating stomatal closure and ROS homeostasis in transgenic tobacco[J]. Front Plant Sci,2020,11:543696.
[27]Zhou J,Li F,Wang J L,et al. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt-and osmotic stress in Arabidopsis[J]. J Plant Physiol,2009,166(12):1296-1306.
[28]Zheng K J,Wang Y T,Wang S C. The non-DNA binding bHLH transcription factor Paclobutrazol Resistances are involved in the regulation of ABA and salt responses in Arabidopsis[J]. Plant Physiology and Biochemistry,2019,139:239-245.
[29]Verma D,Jalmi S K,Bhagat P K,et al. A bHLH transcription factor,MYC2,imparts salt intolerance by regulating proline biosynthesis in Arabidopsis[J]. FEBS J,2020,287(12):2560-2576.
[30]Deng C Y,Ye H Y,Fan M,et al. The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis[J]. Plant Signal Behav,2017,12(5):e1316442.
[31]Yang X Y,Wang R,Hu Q L,et al. DlICE1,a stress-responsive gene from Dimocarpus longan,enhances cold tolerance in transgenic Arabidopsis[J]. Plant Physiol Biochem,2019,142:490-499.
[32]Zhou L,He Y J,Li J,et al. An eggplant SmICE1a gene encoding MYC-type ICE1-like transcription factor enhances freezing tolerance in transgenic Arabidopsis thaliana[J]. Plant Biol,2020,22(3):450-458.
[33]Huang X S,Zhang Q,Zhu D,et al. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase[J]. Journal of Experimental Botany,2015,66(11):3259-3274.
[34]Huang X S,Wang W,Zhang Q,et al. A basic helix-loop-helix transcription factor,PtrbHLH,of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide[J]. Plant Physiol,2013,162(2):1178-1194.
[35]Geng J J,Wei T L,Wang Y,et al. Overexpression of PtrbHLH,a basic helix-loop-helix transcription factor from Poncirus trifoliata,confers enhanced cold tolerance in pummelo (Citrus grandis) by modulation of H2O2 level via regulating a CAT gene[J]. Tree Physiol,2019,39(12):2045-2054.
[36]Geng J J,Liu J H. The transcription factor CsbHLH18 of sweet orange functions in modulation of cold tolerance and homeostasis of reactive oxygen species by regulating the antioxidant gene[J]. J Exp Bot,2018,69(10):2677-2692.
[37]Zhao Q,Xiang X H,Liu D,et al. Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the ntcbf pathway and reactive oxygen species homeostasis[J]. Front Plant Sci,2018,9:381.
[38]Zhang J,Liu B,Li M S,et al. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis[J]. Plant Cell,2015,27(3):787-805.
[39]Huang D Q,Dai W H. Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus[J]. Plant Cell Rep,2015,34(7):1211-1224.
[40]Zhao Q,Ren Y R,Wang Q J,et al. Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple[J]. Plant Biotechnol J,2016,14(7):1633-1645.
[41]Li L,Gao W W,Peng Q,et al. Two soybean bHLH factors regulate response to iron deficiency[J]. Journal of Integrative Plant Biology,2018,60(7):608-622.
[42]Kobayashi T,Ozu A,Kobayashi S,et al. OsbHLH058 and OsbHLH059 transcription factors positively regulate iron deficiency responses in rice[J]. Plant Molecular Biology,2019,101(4/5):471-486.
[43]Jiang Y,Yang B,Deyholos M K. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress[J]. Mol Genet Genomics,2009,282(5):503-516.
[44]Liu Y,Ji X,Nie X,et al. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs[J]. New Phytol,2015,207(3):692-709.
[45]Ji X Y,Nie X G,Liu Y J,et al. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation[J]. Tree Physiol,2016,36(2):193-207.
[46]Wang F B,Zhu H,Kong W L,et al. The antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis[J]. Planta,2016,244(1):59-73.
[47]Naing A H,Park K I,Ai T N,et al. Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance[J]. BMC Plant Biol,2017,17(1):65.
[48]Qiu J R,Xiang X Y,Wang J T,et a. MfPIF1 of resurrection plant yrothamnus flabellifolia plays a positive regulatory role in responding to drought and salinity stresses in Arabidopsis[J]. Int J Mol Sci,2020,21(8):3011.
[49]Qiu J R,Huang Z,Xiang X Y,et al. MfbHLH38,a Myrothamnus flabellifolia bHLH transcription factor,confers tolerance to drought and salinity stresses in Arabidopsis[J]. BMC Plant Biol,2020,20(1):542.
[50]Babitha K C,Vemanna R S,Nataraja K N,et al. Overexpression of ecbhlh57 transcription factor from Eleusine coracana L. in tobacco confers tolerance to salt,oxidative and drought stress[J]. PLoS One,2015,10(9):e0137098.
[51]Li F,Guo S Y,Zhao Y,et al. Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing and salt tolerance in transgenic Arabidopsis[J]. Plant Cell Rep,2010,29(9):977-986.
[52]Feng H L,Ma N N,Meng X,et al. A novel tomato MYC-type ICE1-like transcription factor,SlICE1a,confers cold,osmotic and salt tolerance in transgenic tobacco[J]. Plant Physiol Biochem,2013,73:309-320.
[53]Zhai Y Q,Zhang L C,Xia C,et al. The wheat transcription factor,TabHLH39,improves tolerance to multiple abiotic stressors in transgenic plants[J]. Biochemical and Biophysical Research Communications,2016,473(4):1321-1327.
[54]Zuo Z F,Kang H G,Hong Q C,et al Y. A novel basic helix-loop-helix transcription factor,ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging[J]. Plant Mol Biol,2020,102(4/5):447-462.
[55]Zhang T G,Mo J N,Zhou K,et al. Overexpression of Brassica campestris BcICE1 gene increases abiotic stress tolerance in tobacco[J]. Plant Physiol Biochem,2018,132:515-523.
[56]Chen L,Chen Y,Jiang J F,et al. The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature,salinity and drought tolerance[J]. Plant Cell Reports,2012,31(9):1747-1758.
[57]Verma R K,Kumar V V S,Yadav S K,et al. Overexpression of Arabidopsis ICE1 enhances yield and multiple abiotic stress tolerance in indica rice[J]. Plant Signal Behav,2020,15(11):1814547.
[58]Li Z X,Gao Q,Liu Y Z,et al. Overexpression of transcription factor ZmPTF1 improves low phosphate tolerance of maize by regulating carbon metabolism and root growth[J]. Planta,2011,233(6):1129-1143.
[59]Li Z X,Liu C,Zhang Y,et al. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis[J]. Journal of Experimental Botany,2019,70(19):5471-5486.
[60]Yang T R,Yao S F,Hao L,et al. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway[J]. Plant Cell Reports,2016,35(11):2309-2323.
[61]Yang T R,Hao L,Yao S F,et al. TabHLH1,a bHLH-type transcription factor gene in wheat,improves plant tolerance to Pi and N deprivation via regulation of nutrient transporter gene transcription and ROS homeostasis[J]. Plant Physiol Biochem,2016,104:99-113.
[1]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(12):362.
[2]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(12):349.
[3]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(12):292.
[4]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(12):348.
[5]郭义红,孙威江,林伟东,等.植物DNA条形码鉴定研究进展[J].江苏农业科学,2016,44(07):19.
Guo Yihong,et al.Research progress of plant Identification by DNA barcoding[J].Jiangsu Agricultural Sciences,2016,44(12):19.
[6]陈露,杨立明,罗玉明.植物ICE蛋白基因家族的系统进化分析[J].江苏农业科学,2016,44(02):42.
Chen Lu,et al.Phylogenetic analysis of ICE protein gene family in plants[J].Jiangsu Agricultural Sciences,2016,44(12):42.
[7]韩俊杰,王昊龙,李卫华.关联分析及其在不同分子标记中的应用综述[J].江苏农业科学,2016,44(02):13.
Han Junjie,et al.Correlation analysis and its application in different molecular markers[J].Jiangsu Agricultural Sciences,2016,44(12):13.
[8]白晓龙,杨春和,顾卫兵,等.不同植物人工湿地净化模拟生活污水效果[J].江苏农业科学,2014,42(04):326.
Bai Xiaolong,et al.Purifying effects of artificial wetlands with different vegetation systems on synthetic domestic sewage[J].Jiangsu Agricultural Sciences,2014,42(12):326.
[9]李海波,王鹏飞,李英华.用于城市径流净化的岸堤漫流技术的植物与基质的组配方式[J].江苏农业科学,2015,43(07):357.
Li Haibo,et al.Equipping way of plants and substrates of embankment flowing technology used for urban runoff purification[J].Jiangsu Agricultural Sciences,2015,43(12):357.
[10]闻婧,孟力力,张俊,等.弱光对植物光合特性影响的研究进展[J].江苏农业科学,2014,42(07):22.
Wen Jing,et al.Research progress on photosynthetic characteristics of plant under weak light[J].Jiangsu Agricultural Sciences,2014,42(12):22.