|本期目录/Table of Contents|

[1]付正莉,刘蕊,王宁宁,等.植物分枝发育调控的研究进展[J].江苏农业科学,2018,46(13):17-21.
 Fu Zhengli,et al.Research progress on molecular mechanism of regulating plant branching[J].Jiangsu Agricultural Sciences,2018,46(13):17-21.
点击复制

植物分枝发育调控的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第13期
页码:
17-21
栏目:
专论与综述
出版日期:
2018-07-05

文章信息/Info

Title:
Research progress on molecular mechanism of regulating plant branching
作者:
付正莉1 刘蕊1 王宁宁1 朱克明1 陈松2 张洁夫2 谭小力1
1.江苏大学生命科学研究院,江苏镇江 212013; 2.江苏省农业科学院经济作物研究所,江苏南京 210014
Author(s):
Fu Zhengliet al
关键词:
植物基因分枝调控机制
Keywords:
-
分类号:
Q944.1
DOI:
-
文献标志码:
A
摘要:
植物分枝发育在植物形态建成中具有重要作用,与植物生物量和作物产量关系密切。随着植物基因组学和分子遗传学的快速发展,分枝发育的研究取得了较大进展。近年来,人们从拟南芥、水稻、豌豆、矮牵牛、番茄、玉米突变体中克隆了一系列与分枝相关的重要基因,对植物分枝发育调控机制的认识不断深入。本文综述了植物分枝发育受到遗传、激素、环境等多种因素控制以及近年来腋生分生组织形成和生长相关基因的研究进展。
Abstract:
-

参考文献/References:

[1]Greb T,Clarenz O,Schafer E,et al. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation[J]. Genes Dev,2003,17(9):1175-1187.
[2]Schumacher K,Schmitt T,Rossberg M,et al. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family[J]. Proc Natl Acad Sci USA,1999,96(1):290-295.
[3]Rossmann S,Kohlen W,Hasson A,et al. Lateral suppressor and Goblet act in hierarchical order to regulate ectopic meristem formation at the base of tomato leaflets[J]. Plant J,2015,81(6):837-848.
[4]Long J,Barton M K. Initiation of axillary and floral meristems in Arabidopsis[J]. Dev Biol,2000,218(2):341-353.
[5]Raatz B,Eicker A,Schmitz G,et al. Specific expression of LATERAL SUPPRESSOR is controlled by an evolutionarily conserved 3 enhancer[J]. Plant J,2011,68(3):400-412.
[6]Li X,Qian Q,Fu Z,et al. Control of tillering in rice[J]. Nature,2003,422(6932):618-621.
[7]Xu C,Wang Y,Yu Y,et al. Degradation of MONOCULM 1 by APC/C(TAD1) regulates rice tillering[J]. Nat Commun,2012,3(2):750.
[8]Lin Q,Wang D,Dong H,et al. Rice APC/C(TE) controls tillering by mediating the degradation of MONOCULM 1[J]. Nat Commun,2012,3(2):752.
[9]Liang W H,Shang F,Lin Q T,et al. Tillering and panicle branching genes in rice[J]. Gene,2014,537(1):1-5.
[10]Müller D,Schmitz G,Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis[J]. Plant Cell,2006,18(3):586-597.
[11]Busch B L,Schmitz G,Rossmann S,et al. Shoot branching and leaf dissection in tomato are regulated by homologous gene modules[J]. Plant Cell,2011,23(10):3595-3609.
[12]Komatsu K,Maekawa M,Ujiie S,et al. LAX and SPA:major regulators of shoot branching in rice[J]. PNAS,2003,100(20):11765-11770.
[13]Oikawa T,Kyozuka J. Two-step regulation of LAX PANICLE1 protein accumulation in axillary meristem formation in rice[J]. Plant Cell,2009,21(4):1095-1108.
[14]Tabuchi H,Zhang Y,Hattori S,et al. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems[J]. Plant Cell,2011,23(9):3276-3287.
[15]Skirpan A,Wu X,Mcsteen P. Genetic and physical interaction suggest that BARREN STALK 1 is a target of BARREN INFLORESCENCE2 in maize inflorescence development[J]. Plant Journal,2008,55(5):787-797.
[16]Mcsteen P,Malcomber S,Skirpan A,et al. barren inflorescence2 Encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize[J]. Plant Physiol,2007,144(2):1000-1011.
[17]Mcsteen P,Hake S. Barren inflorescence2 regulates axillary meristem development in the maize inflorescence[J]. Development,2001,128(15):2881-2891.
[18]Gallavotti A,Zhao Q,Kyozuka J,et al. The role of barren stalk1 in the architecture of maize[J]. Nature,2004,432(7017):630-635.
[19]Liao C,Peng Y,Ma W,et al. Proteomic analysis revealed nitrogen-mediated metabolic,developmental,and hormonal regulation of maize (Zea mays L.) ear growth[J]. J Exp Bot,2012,63(14):5275-5288.
[20]Gallavotti A,Barazesh S,Malcomber S,et al. Sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize[J]. Proc Natl Acad Sci U S A,2008,105(39):15196-15201.
[21]Galli M,Liu Q,Moss B L,et al. Auxin signaling modules regulate maize inflorescence architecture[J]. Proc Natl Acad Sci U S A,2015,112(43):13372-13377.
[22]Booker J,Auldridge M,Wills S,et al. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule[J]. Curr Biol,2004,14(14):1232-1238.
[23]Johnson X,Brcich T,Dun E A,et al. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals[J]. Plant Physiol,2006,142(3):1014-1026.
[24]Zou J,Zhang S,Zhang W,et al. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds[J]. Plant J,2006,48(5):687-698.
[25]Sorefan K,Booker J,Haurogné K,et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea[J]. Genes Dev,2003,17(12):1469-1474.
[26]Arite T,Iwata H,Ohshima K,et al. DWARF10,an RMS1/MAX4/DAD1 ortholog,controls lateral bud outgrowth in rice[J]. Plant J,2007,51(6):1019-1029.
[27]Alder A,Jamil M,Marzorati M,et al. The path from beta-carotene to carlactone,a strigolactone-like plant hormone[J]. Science,2012,335(6074):1348-1351.
[28]Cardoso C,Zhang Y,Jamil M,et al. Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs[J]. Proc Natl Acad Sci U S A,2014,111(6):2379-2384.
[29]Zhang Y,van Dijk A D,Scaffidi A,et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis[J]. Nat Chem Biol,2014,10(12):1028-1033.
[30]Stirnberg P,van De Sande K,Leyser H M. MAX1 and MAX2 control shoot lateral branching in Arabidopsis[J]. Development,2002,129(5):1131-1141.
[31]Booker J,Sieberer T,Wright W,et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone[J]. Dev Cell,2005,8(3):443-449.
[32]Wang Y,Li J. Branching in rice[J]. Curr Opin Plant Biol,2011,14(1):94-99.
[33]Jiang L,Liu X,Xiong G,et al. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature,2013,504(7480):401-405.
[34]Zhou F,Lin Q,Zhu L,et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling[J]. Nature,2013,504(7480):406-410.
[35]Lin H,Wang R,Qian Q,et al. DWARF27,an iron-containing protein required for the biosynthesis of strigolactones,regulates rice tiller bud outgrowth[J]. Plant Cell,2009,21(5):1512-1525.
[36]Haecker A,Gross-Hardt R,Geiges B,et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana[J]. Development,2004,131(3):657-668.
[37]Nardmann J,Werr W. The shoot stem cell niche in angiosperms:expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution[J]. Mol Biol Evol,2006,23(12):2492-2504.
[38]Zhang D J,Wang X M,Wang M,et al. Ectopic expression of WUS in hypocotyl promotes cell division via GRP23 in Arabidopsis[J]. PLoS One,2013,8(9):e75773.
[39]Mjomba F M,Zheng Y,Liu H Q,et al. Homeobox is pivotal for OsWUS controlling tiller development and female fertility in rice[J]. G3 (Bethesda),2016,6(7):2013-2021.
[40]Lu Z,Shao G,Xiong J,et al. MONOCULM 3,an ortholog of WUSCHEL in rice,is required for tiller bud formation[J]. J Genet Genomics,2015,42(2):71-78.
[41]Kosugi S,Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family[J]. Plant J,2002,30(3):337-348.
[42]Doebley J,Stec A,Gustus C. Teosinte branched1 and the origin of maize:evidence for epistasis and the evolution of dominance[J]. Genetics,1995,141(1):333-346.
[43]Takeda T,Suwa Y,Suzuki M,et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. Plant J,2003,33(3):513-520.
[44]Choi M S,Woo M O,Koh E B,et al. Teosinte Branched 1 modulates tillering in rice plants[J]. Plant Cell Rep,2012,31(1):57-65.
[45]Wang J R,Hu H,Wang G H,et al. Expression of PIN genes in rice (Oryza sativa L.):tissue specificity and regulation by hormones[J]. Mol Plant,2009,2(4):823-831.
[46]Xu M,Zhu L,Shou H X,et al. A PIN1 family gene,OsPIN1,involved in auxin-dependent adventitious root emergence and tillering in rice[J]. Plant Cell Physiol,2005,46(10):1674-1681.
[47]Zhang Q,Li J,Zhang W,et al. The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance[J]. Plant J,2012,72(5):805-816.
[48]Lu G,Coneva V,Casaretto J A,et al. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis,transport and distribution[J]. Plant J,2015,83(5):913-925.
[49]Jung H,Lee D K,Choi Y D,et al. OsIAA6,a member of the rice Aux/IAA gene family,is involved in drought tolerance and tiller outgrowth[J]. Plant Sci,2015,236:304-312.
[50]Minakuchi K,Kameoka H,Yasuno N,et al. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice[J]. Plant Cell Physiol,2010,51(7):1127-1135.
[51]Xu J,Zha M,Li Y,et al. The interaction between nitrogen availability and auxin,cytokinin,and strigolactone in the control of shoot branching in rice (Oryza sativa L.)[J]. Plant Cell Rep,2015,34(9):1647-1662.
[52]Reintanz B,Lehnen M,Reichelt M,et al. Bus,a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates[J]. Plant Cell,2001,13(2):351-367.
[53]Tantikanjana T,Yong J W,Letham D S,et al. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene[J]. Genes Dev,2001,15(12):1577-1588.
[54]Tantikanjana T,Mikkelsen M D,Hussain M,et al. Functional analysis of the tandem-duplicated P450 genes SPS/BUS/CYP79F1 and CYP79F2 in glucosinolate biosynthesis and plant development by Ds transposition-generated double mutants[J]. Plant Physiol,2004,135(2):840-848.
[55]Hansen C H,Wittstock U,Olsen C E,et al. Cytochrome p450 CYP79F1 from arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates[J]. J Biol Chem,2001,276(14):11078-11085.

相似文献/References:

[1]王武明,索伦,周雨潇,等.小鼠原钙黏蛋白的多样性分析及其亚型的克隆与表达[J].江苏农业科学,2014,42(11):34.
 Wang Wuming,et al().Diversity analysis of mouse protocadherin and cloning and expression of its subtypes[J].Jiangsu Agricultural Sciences,2014,42(13):34.
[2]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(13):362.
[3]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(13):349.
[4]李青青,王旭歌,钟甲丽,等.纤维素酶系基因的克隆与序列分析[J].江苏农业科学,2016,44(03):40.
 Li Qingqing,et al.Cloning and sequence analysis of cellulase system genes[J].Jiangsu Agricultural Sciences,2016,44(13):40.
[5]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
 Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(13):292.
[6]宋德荣,王棋文,申小云,等.贵州黑山羊基因多态性研究进展[J].江苏农业科学,2013,41(12):5.
 Song Derong,et al.Research progress of gene polymorphism of Guizhou black goat[J].Jiangsu Agricultural Sciences,2013,41(13):5.
[7]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
 Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(13):348.
[8]胡云,徐如宏,程剑平.小麦高蛋白含量基因与部分优质基因的聚合研究[J].江苏农业科学,2016,44(06):50.
 Hu Yun,et al.Study on polymerization of high protein content genes and some high quality genes in wheat[J].Jiangsu Agricultural Sciences,2016,44(13):50.
[9]郭义红,孙威江,林伟东,等.植物DNA条形码鉴定研究进展[J].江苏农业科学,2016,44(07):19.
 Guo Yihong,et al.Research progress of plant Identification by DNA barcoding[J].Jiangsu Agricultural Sciences,2016,44(13):19.
[10]陈露,杨立明,罗玉明.植物ICE蛋白基因家族的系统进化分析[J].江苏农业科学,2016,44(02):42.
 Chen Lu,et al.Phylogenetic analysis of ICE protein gene family in plants[J].Jiangsu Agricultural Sciences,2016,44(13):42.

备注/Memo

备注/Memo:
收稿日期:2017-03-14
基金项目:国家自然科学基金面上项目(编号:31471527)。
作者简介:付正莉(1991—),女,山东枣庄人,硕士研究生,研究方向为油菜功能基因组学。E-mail:fuzl0715@163.com。
通信作者:谭小力,博士,研究员,研究方向为油菜功能基因组学。E-mail:xltan@ujs.edu.cn。
更新日期/Last Update: 2018-07-05