|本期目录/Table of Contents|

[1]曾德永,崔杰,张萌,等.植物线粒体抗氧化应激效应影响的研究进展[J].江苏农业科学,2018,46(21):31-37.
 Zeng Deyong,et al.Research progress of effects of plant mitochondria on antioxidative stress[J].Jiangsu Agricultural Sciences,2018,46(21):31-37.
点击复制

植物线粒体抗氧化应激效应影响的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第21期
页码:
31-37
栏目:
专论与综述
出版日期:
2018-11-05

文章信息/Info

Title:
Research progress of effects of plant mitochondria on antioxidative stress
作者:
曾德永1 崔杰1 张萌2 关双红3 高鑫1 山珊1 刘梦瑶1 孙野青2 卢卫红1
1.哈尔滨工业大学化工与化学学院,黑龙江哈尔滨 150000; 2.大连海事大学环境科学与工程学院,辽宁大连 116026;
3.哈尔滨工业大学生命科学与技术学院,黑龙江哈尔滨 150000
Author(s):
Zeng Deyonget al
关键词:
植物线粒体电子传递链复合物抗氧化应激活性氧(ROS)研究进展
Keywords:
-
分类号:
S184;Q945.78
DOI:
-
文献标志码:
A
摘要:
线粒体是细胞进行呼吸作用的主要场所,通过氧化磷酸化途径产生ATP。在植物中,线粒体结构相对复杂,除参与呼吸作用外还对光合作用有促进作用。同时线粒体也是植物体内对外界环境最敏感的细胞器之一,外界环境的改变会使线粒体功能紊乱并发生氧化应激。线粒体作为植物体内参与氧化应激的重要细胞器,其功能紊乱将导致活性氧的增多,产生脂质过氧化损伤,影响抗氧化酶系活性及关键蛋白表达量的改变等。本文首先概述了植物细胞线粒体的结构组成,重点介绍了经典电子传递链复合物的构成。其次,介绍了电子传递链复合物的功能,并对线粒体中活性氧(ROS)的产生做了重点的概述。最后详细介绍了氧化应激如何影响植物线粒体三羧酸循环、氧化磷酸化、交替氧化途径中关键酶活性、蛋白以及相关基因的表达,并阐述了植物细胞中线粒体清除ROS的主要途径,包括抗氧化酶系、转录调节因子及相关的功能性蛋白的作用。
Abstract:
-

参考文献/References:

[1]Scheffler I E. A century of mitochondrial research:achievements and perspectives[J]. Mitochondrion,2001,1(1):3-31.
[2]Andersson S G,Kurland C G. Origins of mitochondria and hydrogenosomes[J]. Current Opinion in Microbiology,1999,2(5):535-541.
[3]Smeitink J A,Zeviani M,Turnbull D M,et al. Mitochondrial medicine:a metabolic perspective on the pathology of oxidative phosphorylation disorders[J]. Cell Metabolism,2006,3(1):9-13.
[4]Pogribny I,Koturbash I,Tryndyak V,et al. Fractionated low-dose radiation exposure leads to accumulation of DNA damage and profound alterations in DNA and histone methylation in the murine thymus[J]. Molecular cancer research,2005,3(10):553-561.
[5]Vasconsuelo A,Milanesi L,Boland R. Actions of 17β-estradiol and testosterone in the mitochondria and their implications in aging[J]. Ageing Research Reviews,2013,12(4):907-917.
[6]Fernandes M A S,Marques R J F,Vicente J A F,et al. Sildenafil citrate concentrations not affecting oxidative phosphorylation depress H2O2,generation by rat heart mitochondria[J]. Molecular and Cellular Biochemistry,2008,309(1):77-85.
[7]Lee B H,Zhu J K. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression[J]. Plant Cell,2002,14(6):1235-1251.
[8]Zhu Q,Dugardeyn J,Zhang C,et al. The Arabidopsis thaliana RNA editing factor SLO2,which affects the mitochondrial electron transport chain,participates in multiple stress and hormone responses[J]. Mol Plant,2014,7(2):290-310.
[9]Haili N,Arnal N,Quadrado M,et al. The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria[J]. Nucleic Acids Research,2013,41(13):6650-6663.
[10]Braun H P,Binder S,Brennicke A,et al. The life of plant mitochondrial complex Ⅰ[J]. Mitochondrion,2014,19:295-313.
[11]Meyer E H,Solheim C,Tanz S K,et al. Insights into the composition and assembly of the membrane arm of plant complex Ⅰ through analysis of subcomplexes in Arabidopsis mutant lines[J]. Journal of Biological Chemistry,2011,286(29):26081-26092.
[12]León G,Holuigue L,Jordana X. Mitochondrial complex Ⅱ is essential for gametophyte development in Arabidopsis[J]. Plant Physiology,2007,143(4):1534-1546.
[13]Meyer E H,Giegé P,Gelhaye E,et al. AtCCMH,an essential component of the c-type cytochrome maturation pathway in Arabidopsis mitochondria,interacts with apocytochrome c[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(44):16113-16118.
[14]朱茂祥,杨陟华,龚诒芬,等. 辐射诱发细胞内活性氧增高与DNA氧化损伤研究[J]. 辐射研究与辐射工艺学报,2001,19(4):270-274.
[15]Keunen E,Jozefczak M,Remans T,et al. Alternative respiration as a primary defence during cadmium-induced mitochondrial oxidative challenge in Arabidopsis thaliana[J]. Environmental and Experimental Botany,2013,91:63-73.
[16]de Longevialle A F,Meyer E H,Andrés C,et al. The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 Intron 1 in Arabidopsis thaliana[J]. Plant Cell,2007,19(10):3256-3265.
[17]Sosso D,Mbelo S,Vernoud V,et al. PPR2263,a DYW-Subgroup Pentatricopeptide repeat protein,is required for mitochondrial nad5 and cob transcript editing,mitochondrion biogenesis,and maize growth[J]. Plant Cell,2012,24(2):676-691.
[18]Tomaz T,Bagard M,Pracharoenwattana I,et al. Mitochondrial malate dehydrogenase lowers leaf respiration and supports photorespiratory carbon flux and plant growth in Arabidopsis[J]. Plant Physiology,2010,154(3):1143-1157.
[19]Fuentes D,Meneses M,Nunes-Nesi A,et al. A deficiency in the flavoprotein of Arabidopsis mitochondrial complex Ⅱ results in elevated photosynthesis and better growth in nitrogen-limiting conditions[J]. Plant Physiology,2011,157(3):1114-1127.
[20]van der Merwe M J,Osorio S,Moritz T,et al. Decreased mitochondrial activities of malate dehydrogenase and fumarase in tomato lead to altered root growth and architecture via diverse mechanisms[J]. Plant Physiology,2009,149(2):653-669.
[21]Lee C P,Eubel H,OToole N,et al. Combining proteomics of root and shoot mitochondria and transcript analysis to define constitutive and variable components in plant mitochondria[J]. Phytochemistry,2011,72(10):1092-1108.
[22]Welchen E,García L,Mansilla N,et al. Coordination of plant mitochondrial biogenesis:keeping pace with cellular requirements[J]. Frontiers in Plant Science,2013,4(2):551.
[23]Lee C P,Eubel H,Solheim C,et al. Mitochondrial proteome heterogeneity between tissues from the vegetative and reproductive stages of Arabidopsis thaliana development[J]. Journal of proteome research,2012,11(6):3326-3343.
[24]Fedorovich S V,Waseem T V,Puchkova L V. Biogenetic and morphofunctional heterogeneity of mitochondria:the case of synaptic mitochondria[J]. Reviews in the Neurosciences,2017,28(4):363-373.
[25]Tateda C,Watanabe K,Kusano T,et al. Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis[J]. Journal of experimental botany,2011,62(14):4773-4785.
[26]Vanhoudt N,Vandenhove H,Horemans N,et al. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part Ⅰ:responses in the roots[J]. Journal of environmental radioactivity,2011,102(6):630-637.
[27]Tulah A S,Birch-Machin M A. Stressed out mitochondria:the role of mitochondria in ageing and cancer focussing on strategies and opportunities in human skin[J]. Mitochondrion,2013,13(5):444-453.
[28]Jardim‐Messeder D,Caverzan A,Rauber R,et al. Succinate dehydrogenase (mitochondrial complex Ⅱ) is a source of reactive oxygen species in plants and regulates development and stress responses[J]. New Phytologist,2015,208(3):776-789.
[29]Ralph S J,Moreno-Sánchez R,Neuzil J,et al. Inhibitors of succinate:quinone reductase/complex Ⅱ regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death[J]. Pharmaceutical Research,2011,28(11):2695-2730.
[30]Miwa S,St-Pierre J,Partridge L,et al. Superoxide and hydrogen peroxide production by Drosophila mitochondria[J]. Free Radical Biology and Medicine,2003,35(8):938-948.
[31]Huang S,Taylor N L,Strher E,et al. Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis[J]. The Plant Journal,2013,73(3):429-441.
[32]Belt K,Huang S,Thatcher L F,et al. Salicylic acid-dependent plant stress signalling via mitochondrial succinate dehydrogenase[J]. Plant Physiology,2017,173(4):2029-2040.
[33]Chrobok D,Law S R,Brouwer B,et al. Dissecting the metabolic role of mitochondria during developmental leaf senescence[J]. Plant Physiology,2016,172:2132-2153.
[34]Conrad M,Angeli J P,Vandenabeele P,et al. Regulated necrosis:disease relevance and therapeutic opportunities[J]. Nature Reviews Drug Discovery,2016,15(5):348-366.
[35]Mittler R. ROS are good[J]. Trends in Plant Science,2017,22(1):11-19.
[36]Cadet J,Davies K J A. Oxidative DNA damage & repair:an introduction[J]. Free Radical Biology & Medicine,2017,106:100-110.
[37]Lehmann M,Schwarzlnder M,Obata T,et al. The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts,metabolites,and flux[J]. Molecular Plant,2009,2(3):390-406.
[38]Busi M V,Gomez-Lobato M E,Rius S P,et al. Effect of mitochondrial dysfunction on carbon metabolism and gene expression in flower tissues of Arabidopsis thaliana[J]. Molecular Plant,2011,4(1):127-143.
[39]Verniquet F,Gaillard J,Neuburger M,et al. Rapid inactivation of plant aconitase by hydrogen peroxide[J]. Biochemical Journal,1991,276(3):643-648.
[40]Obata T,Matthes A,Koszior S,et al. Alteration of mitochondrial protein complexes in relation to metabolic regulation under short-term oxidative stress in Arabidopsis seedlings[J]. Phytochemistry,2011,72(10):1081-1091.
[41]Tronconi M A,Fahnenstich H,Weehler M C G,et al. Arabidopsis NAD-malic enzyme functions as a homodimer and heterodimer and has a major impact on nocturnal metabolism[J]. Plant Physiology,2008,146(4):1540-1552.
[42]Gleason C,Huang S,Thatcher L F,et al. Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense[J]. Proceedings of the National Academy of Sciences,2011,108(26):10768-10773.
[43]Schikowsky C,Senkler J,Braun H P. SDH6 and SDH7 contribute to anchoring succinate dehydrogenase to the inner mitochondrial membrane in Arabidopsis thaliana[J]. Plant Physiology,2016,173(2):1094-1108.
[44]Garcia L,Welchen E,Gey U,et al. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis[J]. Plant Cell and Environment,2016,39(3):628-644.
[45]Macfarlane C,Hansen L D,Florez-Sarasa I,et al. Plant mitochondria electron partitioning is independent of short-term temperature changes[J]. Plant Cell & Environment,2010,32(5):585-591.
[46]Sabar M,Balk J,Leaver C J. Histochemical staining and quantification of plant mitochondrial respiratory chain complexes using blue-native polyacrylamide gel electrophoresis[J]. Plant Journal,2005,44(5):893-901.
[47]Sabar M,Gagliardi D,Balk J,et al. ORFB is a subunit of F1F(O)-ATP synthase:insight into the basis of cytoplasmic male sterility in sunflower[J]. EMBO Reports,2003,4(4):381-386.
[48]Jacoby R P,Li L,Huang S,et al. Mitochondrial composition,function and stress response in plants[J]. Journal of Integrative Plant Biology,2012,54(11):887-906.
[49]Millar A H,Whelan J,Soole K L,et al. Organization and regulation of mitochondrial respiration in plants[J]. Annual Review of Plant Biology,2011,62:79-104.
[50]Yoshida T,Goto S,Kawakatsu M,et al. Mitochondrial dysfunction,a probable cause of persistent oxidative stress after exposure to ionizing radiation[J]. Free Radical Research,2012,46(2):147-153.
[51]Cvetkovska M,Vanlerberghe G C. Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide[J]. New Phytologist,2012,195(1):32-39.
[52]Whelan J. Alternative oxidases in Arabidopsis:a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses[J]. Biochim.biophys.acta,2006,1757(7):730-741.
[53]Vanlerberghe G C. Alternative oxidase:a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants[J]. International Journal of Molecular Sciences,2013,14(4):6805-6847.
[54]Vanhoudt N,Cuypers A,Horemans N,et al. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part Ⅱ:responses in the leaves and general conclusions[J]. Journal of environmental radioactivity,2011,102(6):638-645.
[55]Dahal K,Vanlerberghe G C. Alternative oxidase respiration maintains both mitochondrial and chloroplast function during drought[J]. New Phytologist,2017,213(2):560-571.
[56]Mller I M. Plant mitochondria and oxidative stress:electron transport,NADPH turnover,and metabolism of reactive oxygen species[J]. Annual Review of Plant Biology,2001,52(1):561-591.
[57]Considine M J,Goodman M,Echtay K S,et al. Superoxide stimulates a proton leak in potato mitochondria that is related to the activity of uncoupling protein[J]. Journal of Biological Chemistry,2003,278(25):22298-22302.
[58]胡银松,高文蕊,王瑞芳,等. 胁迫下欧李AOX及UCP基因家族表达分析[J]. 林业科技,2015(1):6-10.
[59]Sweetlove L J,Lytovchenko A,Morgan M,et al. Mitochondrial uncoupling protein is required for efficient photosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(51):19587-19592.
[60]Racchi M L. Antioxidant defenses in plants with attention to Prunus and Citrus spp.[J]. Antioxidants,2013,2(4):340-369.
[61]Nath K,Kumar S,Poudyal R S,et al. Developmental stage-dependent differential gene expression of superoxide dismutase isoenzymes and their localization and physical interaction network in rice (Oryza sativa L.)[J]. Genes & Genomics,2014,36(1):45-55.
[62]Li C R,Liang D D,Li J,et al. Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice ALTEMATIVE OXIDASE1 genes[J]. Plant Cell & Environment,2013,36(4):775-788.
[63]Teixeira F K,Menezes-Benavente L,Margis R,et al. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family:inferences from the rice genome[J]. Journal of Molecular Evolution,2004,59(6):761-770.
[64]Zhang Z,Zhang Q,Wu J,et al. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought,salt and cold stresses[J]. PLoS One,2013,8(2):e57472.
[65]Bonifacio A,Martins M O,Ribeiro C W,et al. Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress[J]. Plant,cell & environment,2011,34(10):1705-1722.
[66]Meyer Y,Belin C,Delorme-Hinoux V,et al. Thioredoxin and glutaredoxin systems in plants:molecular mechanisms,crosstalks,and functional significance[J]. Antioxidants & Redox Signaling,2012,17(8):1124-1160.
[67]Morino K,Kimizu M,Fujiwara M. Disulfide proteomics of rice cultured cells in response to OsRacl and probenazole-related immune signaling pathway in rice[J]. Proteome Science,2017,15(1):6.
[68]Caverzan A,Passaia G,Rosa S B,et al. Plant responses to stresses:role of ascorbate peroxidase in the antioxidant protection[J]. Genetics and Molecular Biology,2012,35(4):1011-1019.
[69]Kim Y H,Khan A L,Waqas M,et al. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress:a review[J]. Frontiers in plant science,2017(8):510.
[70]Suzuki N,Rivero R M,Shulaev V,et al. Abiotic and biotic stress combinations[J]. New Phytologist,2014,203(1):32-43.
[71]Gowayed S M H,Al-Zahrani H S M,Metwali E M R. Improving the salinity tolerance in potato (Solanum tuberosum) by exogenous application of silicon dioxide nanoparticles[J]. International Journal of Agriculture & Biology,2017,19(1):183-192.
[72]Szarka A,Bánhegyi G,Asard H. The inter-relationship of ascorbate transport,metabolism and mitochondrial,plastidic respiration[J]. Antioxidants and Redox Signaling,2013,19(9):1036-1044.
[73]Kühlbrandt W,Wang D A N,Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography[J]. Nature,1994,367(2):614-621.
[74]Faltin Z,Holland D,Velcheva M,et al. Glutathione peroxidase regulation of reactive oxygen species level is crucial for in vitro plant differentiation[J]. Plant and cell physiology,2010,51(7):1151-1162.
[75]Yamaguchi-Shinozaki K,Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annual Review of Plant Biology,2006,57:781-803.
[76]Liu X M,Nguyen X C,Kim K E,et al. Phosphorylation of the zinc finger transcriptional regulator ZAT6 by MPK6 regulates Arabidopsis seed germination under salt and osmotic stress[J]. Biochemical and biophysical research communications,2013,430(3):1054-1059.
[77]Yamauchi Y,Kunishima M,Mizutani M,et al. Reactive short-chain leaf volatiles act as powerful inducers of abiotic stress-related gene expression[J]. Scientific Reports,2015(5):8030.
[78]Sun S J,Guo S Q,Yang X,et al. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice[J]. Journal of Experimental Botany,2010,61(10):2807-2818.
[79]Zhang H,Liu Y,Wen F,et al. A novel rice C2H2-type zinc finger protein,ZFP36,is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice[J]. Journal of Experimental Botany,2014,65(20):5795-5809.
[80]Zhou T,Yang X,Wang L,et al. GhTZF1 regulates drought stress responses and delays leaf senescence by inhibiting reactive oxygen species accumulation in transgenic Arabidopsis[J]. Plant molecular biology,2014,85(1-2):163.
[81]Wang F,Chen H W,Li Q T,et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants[J]. The Plant Journal,2015,83(2):224-236.
[82]Yan H,Jia H,Chen X,et al. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production[J]. Plant and Cell Physiology,2014,55(12):2060-2076.
[83]Sun J,Hu W,Zhou R,et al. The Brachypodium distachyon BdWRKY36 gene confers tolerance to drought stress in transgenic tobacco plants[J]. Plant Cell Reports,2015,34(1):23-35.
[84]Wang B Q,Zhang Q F,Liu J H,et al. Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato:effect on ROS elimination[J]. Biochemical and Biophysical Research Communications,2011,413(1):10-16.
[85]Jang S J,Wi S J,Choi Y J,et al. Increased polyamine biosynthesis enhances stress tolerance by preventing the accumulation of reactive oxygen species:T-DNA mutational analysis of Oryza sativa lysine decarboxylase-like protein 1[J]. Molecules and cells,2012,34(3):251-262.
[86]Tuteja N,Sahoo R K,Garg B,et al. OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64)[J]. The Plant Journal,2013,76(1):115-127.
[87]You J,Hu H,Xiong L. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice[J]. Plant science,2012,197:59-69.

相似文献/References:

[1]谢吴斌,罗毅平,闫玉莲,等.圆口铜鱼幼鱼线粒体的能量代[J].江苏农业科学,2013,41(04):219.
[2]谷文英,牟莹莹,钱泽,等.外源甜菜碱对盐胁迫下菊苣幼苗线粒体膜氧化损伤的缓解作用[J].江苏农业科学,2013,41(07):198.
 Gu Wenying,et al.Mitigative effect of exogenous glycine betaine on mitochondrial membrane oxidative damage of chicory seedling under salt stress[J].Jiangsu Agricultural Sciences,2013,41(21):198.
[3]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(21):362.
[4]王志强,俞红贤,荆海霞,等.牦牛SLC25A6基因的CDS序列及其表达蛋白生物信息学分析[J].江苏农业科学,2014,42(09):36.
 Wang Zhiqiang,et al.CDS cloning and expression of SLC25A6 gene and its bioinformatics analysis in yak[J].Jiangsu Agricultural Sciences,2014,42(21):36.
[5]王志强,俞红贤,荆海霞,等.高原习服黄牛脑组织不同部位SLC25A6 mRNA绝对定量分析[J].江苏农业科学,2014,42(08):39.
 Wang Zhiqiang,et al.Absolute quantification analysis of SLC25A6 mRNA in different parts of plateau acclimatization Bos taurus brain[J].Jiangsu Agricultural Sciences,2014,42(21):39.
[6]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(21):349.
[7]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
 Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(21):292.
[8]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
 Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(21):348.
[9]牛宝珍,杜民,刘艳红,等.巨鱼丕线粒体DNA ND6基因克隆及多态性分析[J].江苏农业科学,2016,44(04):62.
 Niu Baozhen,et al.Cloning and polymorphism analysis of mitochondrial DNA ND6 gene of Bagarius yarrelli[J].Jiangsu Agricultural Sciences,2016,44(21):62.
[10]郭义红,孙威江,林伟东,等.植物DNA条形码鉴定研究进展[J].江苏农业科学,2016,44(07):19.
 Guo Yihong,et al.Research progress of plant Identification by DNA barcoding[J].Jiangsu Agricultural Sciences,2016,44(21):19.

备注/Memo

备注/Memo:
收稿日期:2017-07-11
基金项目:国家重点研发计划(编号:2017YFC160090)。
作者简介:曾德永(1993—),男,贵州湄潭人,硕士研究生,研究方向为极端环境生物学效应。E-mail:nefuzdy@126.com。
通信作者:卢卫红,博士,教授,研究方向为极端环境生物学效应。E-mail:lwh@hit.edu.cn。
更新日期/Last Update: 2018-11-05