|本期目录/Table of Contents|

[1]程鸿燕,郭昱,马芳芳,等.谷子NCED基因家族鉴定及其干旱胁迫响应表达模式分析[J].江苏农业科学,2019,47(01):40-44.
 Cheng Hongyan,et al.Genome-wide identification and drought stress-responsive expression analysis of NCED genes in Setaria italica[J].Jiangsu Agricultural Sciences,2019,47(01):40-44.
点击复制

谷子NCED基因家族鉴定及其干旱胁迫响应
表达模式分析
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第01期
页码:
40-44
栏目:
生物技术
出版日期:
2019-01-05

文章信息/Info

Title:
Genome-wide identification and drought stress-responsive expression analysis of NCED genes in Setaria italica
作者:
程鸿燕1 郭昱1 马芳芳1 王玉文3 禾璐4 韩渊怀12
1.山西农业大学农学院,山西太谷 030801; 2.山西农业大学生物工程研究所,山西太谷 030801;
3.山西省农业科学院谷子研究所,山西长治 046000; 4.山西省农业科学院玉米研究所,山西忻州 034000
Author(s):
Cheng Hongyanet al
关键词:
谷子NCED家族基因干旱胁迫表达生物信息学
Keywords:
-
分类号:
S515.01
DOI:
-
文献标志码:
A
摘要:
基于转录组数据分析并结合谷子基因组数据库鉴定出10个候选NCED基因,对它们的结构特点、理化性质、启动子元件功能等进行分析,并以抗旱(GG)和干旱敏感谷子品种(JF16)为材料,对PEG胁迫前后差异基因的表达特点进行分析。结果表明,谷子中编码NCED家族基因启动子中含较多与抗旱胁迫相关的功能元件;经PEG胁迫处理后,Seita.2G035400在GG和JF16中表达量均上调,但上调幅度有所差异。该研究结果进一步加强了对植物NCED基因家族的了解,也为后续进行谷子抗旱机制和抗旱分子育种提供了理论借鉴依据。
Abstract:
-

参考文献/References:

[1]李荫梅. 谷子育种学[M]. 北京:中国农业出版社,1997:421-446.
[2]Muthamilarasan M,Prasad M. Advances in setaria genomics for genetic improvement of cereals and bioenergy grasses[J]. Theoretical and Applied Genetics,2015,128(1):1-14.
[3]Diao X,Schnable J,Bennetzen J L,et al. Initiation of setaria as a model plant[J]. Frontiers of Agricultural Science and Engineering,2014,1(1):16-20.
[4]Hu H,Xiong L. Genetic engineering and breeding of drought-resistant crops[J]. Annual Review of Plant Biology,2014,65(1):715-741.
[5]Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology,2002,53:247-273.
[6]Cutler S R,Rodriguez P L,Finkelstein R R,et al. Abscisic acid:emergence of a core signaling network[J]. Annual Review of Plant Biology,2010,61(1):651-679.
[7]Shinozaki K,Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany,2007,58(2):221-227.
[8]Tan B C,Joseph L M,Deng W T,et al. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family[J]. The Plant Journal:for Cell and Molecular Biology,2003,35(1):44-56.
[9]Ren H,Gao Z,Chen L,et al. Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissues under water deficit[J]. Journal of Experimental Botany,2007,58(2):211-219.
[10]Schwartz S H,Qin X,Zeevaart J A. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants,genes,and enzymes[J]. Plant Physiology,2003,131(4):1591-1601.
[11]Tan B C,Mccarty D R. Genetic control of abscisic acid biosynthesis in maize[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(22):12235-12240.
[12]Burbidge A,Grieve T,Jackson A,et al. Structure and expression of a cDNA encoding a putative neoxanthin cleavage enzyme(NCE)isolated from a wilt-related tomato(Lycopersicon esculentum Mill.)library[J]. Journal of Experimental Botany,1997,48(12):2111-2112.
[13]Iuchi S,Kobayashi M,Yamaguchi-Shinozaki K,et al. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea[J]. Plant Physiology,2000,123(2):553-562.
[14]Iuchi S,Kobayashi M,Taji T,et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase,a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. Plant Journal,2001,27(4):325-333.
[15]Yang J,Guo Z. Cloning of a 9-cis-epoxycarotenoid dioxygenase gene (SgNCED1) from Stylosanthes guianensis and its expression in response to abiotic stresses[J]. Plant Cell Reports,2007,26(8):1383-1390.
[16]李康,聂小军,方桂英,等. 普通小麦及其近缘种NCED基因的克隆及表达分析[J]. 西北农业学报,2010,19(6):55-59.
[17]李嘉怡,苏良辰,何月容,等. 超表达AhNCED1拟南芥植株在渗透胁迫下抗氧化能力和抗旱相关下游基因表达变化 [J]. 植物生理学报,2012,48(12):1167-1172.
[18]胡博,肖素妮,吕滟,等. 不同花生品种响应干旱胁迫后叶片内ABA与AhNCED1的分布[J]. 中国细胞生物学学报,2012,34(10):992-997.
[19]牛志强,刘国顺,师婷婷,等. 烟草NCED3基因的克隆及其干旱胁迫表达分析[J]. 中国烟草学报,2015,21(3):100-106.
[20]徐学中,汪婷,万旺,等. 水稻ABA生物合成基因OsNCED3响应干旱胁迫[J]. 作物学报,2018,44(1):24-31.
[21]Davies W J,Zhang J. Root signals and the regulation of growth and development of plants in drying soil[J]. Physiol Plant Mol Biol,1991,42(1):55-76.
[22]And P C,Robertson M. Gene expression regulated by abscisic acid and its relation to stress tolerance[J]. Physiol Plant Mol Biol,1994,45(1):113-141.
[23]Neill S J,Desikan R,Clarke A,et al. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells[J]. Plant Physiology,2002,128(1):13-16.
[24]刘新,张蜀秋,娄成后.茉莉酸信号转导及其与脱落酸信号转导的关系[J]. 植物生理学通讯,2002,38(3):285-288.
[25]Turner J G,Ellis C,Devoto A. The jasmonate signal pathway[J]. Plant Cell,2002,14(l):S153-S164.
[26]陶宗娅,邹 琦,彭 涛,等. 水杨酸在小麦幼苗渗透胁迫中的作用[J]. 西北植物学报,1999,19(2):296-302.
[27]坎 平,王莎莎,马文广,等. 赤霉素引发同时提高烟草种子及幼苗抗旱性和抗冷性[J]. 种子,2014,33(2):30-34,38.
[28]Cominelli E,Sala T,Calvi D,et al. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability[J]. The Plant Journal,2008,53(1):53-64.
[29]Qin X Q,Zeevaart J A. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(26):15354-15361.
[30]Burbidge A,Grieve T M,Jackson A,et al. Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14[J]. The Plant Journal,1999,17(4):427-431.

相似文献/References:

[1]李会芬,时丽冉,崔兴国,等.水分胁迫对不同品种谷子萌发期的影响[J].江苏农业科学,2013,41(05):67.
 Li Huifen,et al.Effect of water stress on germination stage of different millet cultivars[J].Jiangsu Agricultural Sciences,2013,41(01):67.
[2]赵敏,李书田,王显瑞,等.谷子新品种峰红谷的选育及栽培要点[J].江苏农业科学,2013,41(11):116.
 Zhao Min,et al.Breeding and cultivation techniques of new millet cultivar “Fenghonggu”[J].Jiangsu Agricultural Sciences,2013,41(01):116.
[3]张艾英,郭素芬,张莉,等.膜侧沟播对旱地春谷生理生态特性及产量的影响[J].江苏农业科学,2016,44(06):148.
 Zhang Aiying,et al.Effects of ridge film mulching and furrow seeding on eco-physiological property and yield of spring foxtail millet in dry land[J].Jiangsu Agricultural Sciences,2016,44(01):148.
[4]呼红梅,王莉.氮、磷、钾对盐胁迫谷子幼苗形态和生理指标的影响[J].江苏农业科学,2016,44(02):117.
 Hu Hongmei,et al.Effects of nitrogen,phosphorus and potassium on seedling morphology and physiology indices of millet under salt stress[J].Jiangsu Agricultural Sciences,2016,44(01):117.
[5]王彦杰,毕少杰,洪秀杰,等.不同浓度沼液浸种和喷施对谷子生长的影响[J].江苏农业科学,2015,43(10):119.
 Wang Yanjie,et al.Effect of soaking and spraying with different concentrations of biogas slurry on growth of millet[J].Jiangsu Agricultural Sciences,2015,43(01):119.
[6]王凌云,郭明,赵艳,等.谷子蔗糖合成酶基因家族鉴定及生物信息学分析[J].江苏农业科学,2017,45(15):30.
 Wang Lingyun,et al.Family identification and bioinformatics analysis of millet sucrose synthase gene[J].Jiangsu Agricultural Sciences,2017,45(01):30.
[7]段明.谷子EPSPS基因的分离、修饰及表达载体的构建[J].江苏农业科学,2016,44(05):51.
 Duan Ming.Separation, modification and construction of expression vector for millet EPSPS gene[J].Jiangsu Agricultural Sciences,2016,44(01):51.
[8]张兰兰,孙冬雪,庞立欣,等.外源硒对谷子植株体内谷胱甘肽过氧化物酶及品质的影响[J].江苏农业科学,2018,46(19):59.
 Zhang Lanlan,et al.Effects of exogenous selenium on glutathione peroxidase activity and quality in millet[J].Jiangsu Agricultural Sciences,2018,46(01):59.
[9]齐帆,范兴,陈义,等.基于RNA-seq数据发掘响应干旱的谷子C2H2型锌指蛋白基因[J].江苏农业科学,2019,47(02):41.
 Qi Fan,et al.Identification of millet C2H2-type zinc finger protein genes in response to drought stress based on RNA-seq data[J].Jiangsu Agricultural Sciences,2019,47(01):41.
[10]琦明玉,张立媛,李红光,等.高产谷子品种高产机制[J].江苏农业科学,2019,47(11):120.
 Qi Mingyu,et al.Study on high-yield mechanism of high-yield millet cultivars[J].Jiangsu Agricultural Sciences,2019,47(01):120.

备注/Memo

备注/Memo:
收稿日期:2018-05-17
基金项目:国家自然科学基金(编号:31401396);山西省青年科技研究基金(编号:201601D021125);山西省重点研发项目(编号:201703D211008);山西省主要农作物种质创新与分子育种重点科技创新平台项目(编号:201605D151002);山西农业大学校基金(编号:2013YJ04、2014022、2014YZ2-5)。
作者简介:程鸿燕(1994—),女,山西运城人,硕士研究生,主要从事植物抗旱生理与分子育种研究。E-mail:c
更新日期/Last Update: 2019-01-05