|本期目录/Table of Contents|

[1]高弘扬,周良云,罗碧,等.乙烯信号转导及其在植物逆境响应中的作用[J].江苏农业科学,2020,48(12):15-19.
 Gao Hongyang,et al.Ethylene signal transduction and its role in plant stress response[J].Jiangsu Agricultural Sciences,2020,48(12):15-19.
点击复制

乙烯信号转导及其在植物逆境响应中的作用(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第12期
页码:
15-19
栏目:
专论与综述
出版日期:
2020-06-20

文章信息/Info

Title:
Ethylene signal transduction and its role in plant stress response
作者:
高弘扬 周良云 罗碧 许丹芸 杨全
广东药科大学,广东广州 510006
Author(s):
Gao Hongyanget al
关键词:
植物逆境胁迫乙烯逆境响应信号转导
Keywords:
-
分类号:
Q945.78
DOI:
-
文献标志码:
A
摘要:
乙烯是一种与胁迫响应有关的激素,在植物生长发育和对环境信号的反应中起着关键作用。乙烯参与种子萌发、叶片与花的脱落、组织器官衰老、果实成熟、单性花性别决定等生理过程的调控,并且对生物和非生物胁迫的应对有重要作用。综述乙烯生理作用和乙烯生物合成及信号转导的最新研究进展,同时对乙烯在植物逆境响应中的作用进行探讨。
Abstract:
-

参考文献/References:

[1]Iqbal N,Khan N A,Ferrante A,et al. Ethylene role in plant growth,development and senescence:interaction with other phytohormones[J]. Frontiers in Plant Science,2017(8):475.
[2]潘延云,郭毅,赵军峰,等. 乙烯在植物中的信号转导[J]. 浙江大学学报(农业与生命科学版),2003,29(4):453-460.
[3]Rudich J,Halevy A H,Kedar N. Ethylene evolution from cucumber plants as related to sex expression[J]. Plant Physiology,1972,49(6):998-999.
[4]Khan N A,Mir M R,Nazar R,et al. The application of ethephon(an ethylene releaser)increases growth,photosynthesis and nitrogen accumulation in mustard(Brassica juncea L.)under high nitrogen levels[J]. Plant Biology,2008,10(5):534-538.
[5]Ronald P,Danny T,Hendrik P,et al. The Janus face of ethylene:growth inhibition and stimulation[J]. Trends in Plant Science,2006,11(4):176-183.
[6]Bennett M J,Marchant A,Green H G,et al. Arabidopsis AUX1 gene:a permease-like regulator of root gravitropism[J]. Science,1996,273(5277):948-950.
[7]Stepanova A N,Hoyt J M,Hamilton A A,et al. A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis[J]. The Plant Cell,2005,17(8):2230-2242.
[8]Woeste K E,Ye C,Kieber J J. Two arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase[J]. Plant Physiology,1999,119(2):521-530.
[9]Vogel J P,Woeste K E,Theologis A,et al. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction,respectively[J]. Proceedings of the National Academy of Sciences,1998,95(8):4766-4771.
[10]Calvo A P,Nicolas C,Nicolas G,et al. Evidence of a cross‐talk regulation of a GA 20-oxidase(FsGA20ox1)by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds[J]. Physiologia Plantarum,2004,120(4):623-630.
[11]Ghassemian M,Nambara E,Cutler S,et al. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis[J]. The Plant Cell,2000,12(7):1117-1126.
[12]陈新建,刘国顺,陈占宽,等. 乙烯生物合成途径及其相关基因工程的研究进展[J]. 热带亚热带植物学报,2002,10(1):83-98.
[13]姚瑞亮,关雄,李杨瑞,等. 植物激素乙烯的分子生物学研究进展[J]. 广西农业生物科学,1999,18(2):153-156.
[14]胡花丽,梁丽松,李鹏霞,等. 外源乙烯对CA贮藏桃果实内源乙烯生物合成的影响[J]. 保鲜与加工,2008,8(5):34-37.
[15]Chang C,Stadler R. Ethylene hormone receptor action in Arabidopsis[J]. BioEssays,2001,23(7):619-627.
[16]Schaller G E,Bleecker A B. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene[J]. Science,1995,270(5243):1809-1811.
[17]Hirayama T,Kieber J J,Hirayama N,et al. RESPONSIVE-TO-ANTAGONIST1,a menkes/wilson disease-related copper transporter,is required for ethylene signaling in Arabidopsis[J]. Cell,1999,97(3):383-393.
[18]Solano R,Ecker J R. Ethylene gas:perception,signaling and response[J]. Current Opinion in Plant Biology,1998,1(5):393-398.
[19]李明亮,韩一凡. 乙烯在植物生长发育和抗病反应中的作用及其生物合成的反义抑制[J]. 林业科学,2000,36(4):77-84.
[20]Gao H Y,Xia X Y,An L J,et al. Reversion of hyperhydricity in pink (Dianthus chinensis L.) plantlets by AgNO3 and its associated mechanism during in vitro culture[J]. Plant Science,2017,254:1-11.
[21]Gazzarrini S,Mccourt P. Genetic interactions between ABA,ethylene and sugar signaling pathways[J]. Current Opinion in Plant Biology,2001,4(5):387-391.
[22]Catalá R,López-Cobollo R,Castellano M M,et al. The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation[J]. The Plant Cell,2014,26(8):3326-3342.
[23]Zhao M G,Liu W J,Xia X Z,et al. Cold acclimation‐induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene[J]. Physiologia Plantarum,2014,152(1):115-129.
[24]Shi Y T,Tian S W,Hou L Y,et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis[J]. The Plant Cell,2012,24(6):2578-2595.
[25]Wu L J,Zhang Z J,Zhang H W,et al. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt,drought,and freezing[J]. Plant Physiology,2008,148(4):1953-1963.
[26]Yu X M,Griffith M,Wiseman S B. Ethylene induces antifreeze activity in winter rye leaves[J]. Plant Physiology,2001,126(3):1232-1240.
[27]Clarke S M,Cristescu S M,Miersch O,et al. Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana[J]. New Phytologist,2009,182(1):175-187.
[28]Shen X Y,Wang Z L,Song X F,et al. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis[J]. Plant Molecular Biology,2014,86(3):303-317.
[29]Xu J,Li Y,Wang Y,et al. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis[J]. Journal of Biological Chemistry,2008,283(40):26996-27006.
[30]Hui D,Zhen Z Q,Peng J Y,et al. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis[J]. Journal of Experimental Botany,2011,62(14):4875-4887.
[31]Chen D H,Ma X Y,Li C L,et al. A wheat aminocyclopropane-1-carboxylate oxidase gene,TaACO1,negatively regulates salinity stress in Arabidopsis thaliana[J]. Plant Cell Reports,2014,33(11):1815-1827.
[32]Jiang C F,Belfield E J,Yi C,et al. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis[J]. The Plant Cell,2013,25(9):3535-3552.
[33]Kevin L W,Yoshida H,Claire L,et al. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein[J]. Nature,2004,428(6986):945-950.
[34]Yang T,Poovaiah B W. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants[J]. The Journal of Biological Chemistry,2002,277(47):45049-45058.
[35]Cao W H,Liu J,He X J,et al. Modulation of ethylene responses affects plant salt-stress responses[J]. Plant Physiology,2007,143:707-719.
[36]Cao W H,Liu J,Zhou Q N,et al. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress[J]. Plant,Cell & Environment,2006,29(7):1210-1219.
[37]Desikan R,Kathryn L,Harrett-Williams R,et al. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated Hydrogen peroxide synthesis[J]. The Plant Journal,2006,47(6):907-916.
[38]Hattori Y,Nagai K,Furukawa S,et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water[J]. Nature,2009,460(7258):1026-1030.
[39]Xu K N,Xu X,Fukao T,et al. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice[J]. Nature,2006,442(713):705-708.
[40]Fukao T,Bailey-Serres J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice[J]. Proceedings of the National Academy of Sciences,2008,105(43):16814-16819.
[41]Licausi F,van Dongen J T,Giuntoli B,et al. HRE1 and HRE2,two hypoxia-inducible ethylene response factors,affect anaerobic responses in Arabidopsis thaliana[J]. The Plant Journal,2010,62(2):302-315.
[42]马婧,杨系玲,孙聪,等. 老山芹正常试管苗和玻璃化苗的生理生化特性比较[J]. 江苏农业科学,2018,46(24):158-160.
[43]van den Dries N,Gianni S,Czerednik A,et al. Flooding of the apoplast is a key factor in the development of hyperhydricity[J]. Journal of Experimental Botany,2013,64(16):5221-5230.
[44]Qing D J,Yang Z,Li M Z,et al. Quantitative and functional phosphoproteomic analysis reveals that ethylene regulates water transport via the C-terminal phosphorylation of aquaporin PIP2;1 in Arabidopsis[J]. Molecular Plant,2016,9(1):158-174.

相似文献/References:

[1]王贵平,王金政.苹果抗逆性研究进展与鉴定方法[J].江苏农业科学,2013,41(07):151.
 Wang Guiping,et al.Research progress and identification method of stress resistance of apple trees[J].Jiangsu Agricultural Sciences,2013,41(12):151.
[2]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(12):362.
[3]牛伟博.DREB转录因子及其在植物抗逆育种中的应用进展[J].江苏农业科学,2014,42(08):17.
 Niu Weibo.Progress on DREB transcription factor and its application in stress-resistance breeding of plants[J].Jiangsu Agricultural Sciences,2014,42(12):17.
[4]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(12):349.
[5]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
 Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(12):292.
[6]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
 Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(12):348.
[7]郭义红,孙威江,林伟东,等.植物DNA条形码鉴定研究进展[J].江苏农业科学,2016,44(07):19.
 Guo Yihong,et al.Research progress of plant Identification by DNA barcoding[J].Jiangsu Agricultural Sciences,2016,44(12):19.
[8]陈露,杨立明,罗玉明.植物ICE蛋白基因家族的系统进化分析[J].江苏农业科学,2016,44(02):42.
 Chen Lu,et al.Phylogenetic analysis of ICE protein gene family in plants[J].Jiangsu Agricultural Sciences,2016,44(12):42.
[9]韩俊杰,王昊龙,李卫华.关联分析及其在不同分子标记中的应用综述[J].江苏农业科学,2016,44(02):13.
 Han Junjie,et al.Correlation analysis and its application in different molecular markers[J].Jiangsu Agricultural Sciences,2016,44(12):13.
[10]白晓龙,杨春和,顾卫兵,等.不同植物人工湿地净化模拟生活污水效果[J].江苏农业科学,2014,42(04):326.
 Bai Xiaolong,et al.Purifying effects of artificial wetlands with different vegetation systems on synthetic domestic sewage[J].Jiangsu Agricultural Sciences,2014,42(12):326.

备注/Memo

备注/Memo:
收稿日期:2019-07-02
基金项目:罗定肉桂产业发展基础研究(中树康)(编号:43248201)。
作者简介:高弘扬(1990—),女,辽宁大连人,博士,讲师,从事植物逆境生理与分子生物学研究。E-mail:13478418806@163.com。
通信作者:杨全,博士,教授,从事南药规范化生产关键技术及应用研究。E-mail:yangquan7208@vip.163.com。
更新日期/Last Update: 2020-06-20