|本期目录/Table of Contents|

[1]杨万霞,陈松峰.植物中硼在微观水平上的作用机制及研究展望[J].江苏农业科学,2021,49(23):34-40.
 Yang Wanxia,et al.Action mechanism and research prospect of boron in plants at micro level[J].Jiangsu Agricultural Sciences,2021,49(23):34-40.
点击复制

植物中硼在微观水平上的作用机制及研究展望(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第23期
页码:
34-40
栏目:
专论与综述
出版日期:
2021-12-05

文章信息/Info

Title:
Action mechanism and research prospect of boron in plants at micro level
作者:
杨万霞12 陈松峰3
1. 南京林业大学南方现代林业协同创新中心,江苏南京 210037; 2.南京林业大学林学院,江苏南京 210037;3.中国科学院南京土壤研究所,江苏南京 210008
Author(s):
Yang Wanxiaet al
关键词:
基因组学蛋白质组学代谢组学转录组学
Keywords:
-
分类号:
S718.3
DOI:
-
文献标志码:
A
摘要:
硼是植物生长所必需的营养元素,在植物正常的生命活动中发挥着重要作用。随着基因组学、蛋白质组学、代谢组学、转录组学等现代技术手段的不断应用,人们对植物中的硼研究也逐渐深入。本文综述了近年来植物中的硼在组学水平上的研究进展,组学技术在构建硼高密度遗传图谱、寻找与硼吸收转运相关的转录因子、硼介导的代谢途径方面的重要作用,可以为研究不同硼水平下植物响应的差异、提高硼利用效率和减弱植物遭受硼毒害的响应机制研究提供一定思路。
Abstract:
-

参考文献/References:

[1]王忠. 植物生理学[M]. 北京:中国农业出版社,2008:80-82.
[2]陆景陵. 植物营养学(上册)[M]. 北京:中国农业大学出版社,2003:77-107.
[3]Warington K.The effect of Boris acid and borax on the B roan bean and certain other plants[J]. Annual of Botany,1923,37:629-672.
[4]焦晓燕,王劲松,武爱莲,等. 缺硼对绿豆叶片光合特性和碳水化合物含量的影响[J]. 植物营养与肥料学报,2013,19(3):615-622.
[5]Kiwanis K,Marc E N,Recap F,et al. Physiological mechanisms of tolerance to high boron concentration in Brassica rapa[J]. Functional Plant Biology,2006,33(10):973-980.
[6]Sotiria S,Georgios L,George K. Boron deficiency effects on growth,photosynthesis and relative concentrations of phenolics of Dittrichia viscosa (Asteraceae)[J]. Environmental and Experimental Botany,2006,56(3):293-300.
[7]ONeill M A,Ishii T,Albersheim P,et al. Rhamnogalacturonan Ⅱ:structure and function of a borate cross-linked cell wall pectic polysaccharide[J]. Annual Review of Plant Biology,2004,55:109-139.
[8]Zhao D L,Oosterhuis D M. Cotton carbon exchange,nonstructural carbohydrates,and boron distribution in tissues during development of boron deficiency[J]. Field Crops Research,2002,78(1):75-87.
[9]Takano J,Noguchi K,Yasumori M,et al. Arabidopsis boron transporter for xylem loading[J]. Nature,2002,420(6913):337-340.
[10]Jiao X Y,Yang Z P,Zhao R F,et al. Effects of boron on indole-3-acetic acid transportation in intact phaseolus aureus plant[J]. The Journal of Applied Ecology,2007,18(2):366-370.
[11]Aftab T,Khan M M A,Idrees M et al. Methyl jasmonate counteracts boron toxicity by preventing oxidative stress and regulating antioxidant enzyme activities and artemisinin biosynthesis in Artemisia annua L.[J]. Verlag,2011,248(3):601-612.
[12]顾渝娟,吴振先. 代谢组学在植物研究中的应用[J]. 广东农业科学,2012(4):105-107.
[13]Pedreschi R,Lurie S,Hertog M,et al. Post-harvest proteomics and food security[J]. Proteomics,2013,13:1772-1783.
[14]Fernie A R,Tadmor Y,Zamir D. Natural genetic variation for improving crop quality[J]. Current Opinion in Plant Biology,2006,9(2):196-202.
[15]王涛,梅旭荣,钟秀丽,等. 脂质组学研究方法及其应用[J]. 植物学报,2010,45(2):249-257.
[16]Xu D L,Long H,Liang J J,et al. De novo assembly and characterization of the root transcriptome of Aegilops variabilis during an interaction with the cereal cyst nematode[J]. BMC Genomics,2012,13:133.
[17]李伟,印莉萍. 基因组学相关概念及其研究进展[J]. 生物学通报,2000,35(11):1-3.
[18]齐香玉,陈双双,冯景,等. 3种瓣型茉莉基因组大小测定与比较[J]. 江苏农业科学,2020,48(19):40-44.
[19]贾琪,吴名耀,梁康迳,等. 基因组学在作物抗逆性研究中的新进展[J]. 中国生态农业学报,2014,22(4):375-385.
[20]Yamada K. Empirical analysis of transcriptional activity in the Arabidopsis genome[J]. Science,2003,302(5646):842-846.
[21]Takano J,Wada M,Ludewig U,et al. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation[J]. The Plant Cell,2006,18:1498-1509.
[22]Miwa K,Fujiwara T. Boron transport in plants:coordinated regulation of transporters[J]. Annual of Botany,2010,105(7):1103-1108.
[23]Miwa K,Takano J,Fujiwara T. Improvement of seed yields under boron-limiting conditions through overexpression of BOR1,a boron transporter for xylem loading,in Arabidopsis thaliana[J]. Plant Journal,2006,46(6):1084-1091.
[24]Miwa K,Wakuta S,Takada K,et al. Roles of BOR2,a boron exporter,in cross linking of rhamnogalacturonan-Ⅱ and root elongation under boron limitation in Arabidopsis[J]. Plant Physiology,2013,163(4):1699-1709.
[25]Perez-Castro R K,Kasai F,Gainza-Cortes S,et al. VvBOR1,the grapevine ortholog of AtBOR1,encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L.[J]. Plant Cell Physiology,2012,53(2):485-494.
[26]Zhao H,Shi L,Duan X L,et al. Mapping and validation of chromosome regions conferring a new boron-efficient locus in Brassica napus[J]. Molecular Breeding,2008,22(3):495-506.
[27]Caon P,Aquea F,de la Guardia A R H,et al. Functional characterization of Citrus macrophylla BOR1 as a boron transporter[J]. Plant Physiology,2013,149(3):329-339.
[28]Chatterjee M,Liu Q J,Menello C,et al. The combined action of duplicated boron transporters is required for maize growth in boron-deficient conditions[J]. Genetics,2017,206(4):2041-2051.
[29]Gioia F D,Aprile A,Sabella E,et al. Grafting response to excess boron and expression analysis of genes coding boron transporters in tomato[J]. Plant Biology,2017,19(5):728-735.
[30]Neto J B D A,Hurtado-Perez M C,Wimmer M A,et al. Genetic factors underlying boron toxicity tolerance in rice:genome-wide association study and transcriptomic analysis[J]. Journal of Experimental Botany,2017,68(3):687-700.
[31]Liu J,Yang J P,Li R Y,et al. Analysis of genetic factors that control shoot mineral concentrations in rapeseed (Brassica napus) in different boron environments[J]. Plant and Soil,2009,320:255-266.
[32]Zhang D D,Hua Y P,Wang X H,et al. A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.)[J]. PLoS One,2014,9(11):e112089.
[33]Hua Y P,Zhou T,Ding G D,et al. Physiological,genomic and transcriptional diversity in responses to boron deficiency in rapeseed genotypes[J]. Journal of Experimental Botany,2016,67(19):5769-5784.
[34]Hua Y P,Feng Y,Zhou T,et al. Genome-scale mRNA transcriptomic insights into the responses of oilseed rape (Brassica napus L.) to varying boron availabilities[J]. Plant and Soil,2017,416(1/2):205-225.
[35]Mosa K A,Kumar K,Chhikara S,et al. Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins[J]. Scientific Reports,2016,6:21640.
[36]Schnurbusch T,Hayes J,Hrmova M,et al. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1[J]. Plant Physiology,2010,153(4):1706-1715.
[37]Maria P P,Antonio L,Caterina L,et al. Long-and short-term effects of boron excess to root form and function in two tomato genotypes[J]. Plant Physiology and Biochemistry,2016,109:9-19.
[38]Rmila C D P,Contreras S A,Di D C,et al. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida[J]. Journal of Hazardous Materials,2016,317(5):476-484.
[39]Crick F. Central dogma of molecular biology[J]. Nature,1970,227:561-563.
[40]Velculescu V E,Zhang L,Zhou W,et al. Characterization of the yeast transcriptome[J]. Cell,1997,88(2):243-251.
[41]赵圣明,赵岩岩,马汉军,等. 转录组学在抑菌机制中的应用研究进展[J]. 食品与发酵工业,2017,43(7):259-264.
[42]Shendure J,Ji H. Next-generation DNA sequencing[J]. Nature Biotechnology,2008,26: 1135-1145.
[43]Nagalakshmi U,Wang Z,Waern K,et al. The transcriptional landscape of the yeast genome defined by RNA sequencing[J]. Science,2008,320(5881):1344-1349.
[44]Wilhelm B T,Marguerat S,Watt S,et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution[J]. Nature,2008,453(7199):1239-1243.
[45]Qi Y X,Liu Y B,Rong W H. RNA-Seq and its applications:a new technology for transcriptomics[J]. Hereditas,2011,33(11):1191-1202.
[46]梁 烨,陈双燕,刘公社. 新一代测序技术在植物转录组研究中的应用[J]. 遗传,2011,33(12):1317-1326.
[47]Ichiro K,Yoko I,Masami Y H,et al. WRKY6 is involved in the response to boron deficiency in Arabidopsis thaliana[J]. Physiologia Plantarum,2010,139(1):80-92.
[48]Quiles-Pando C,Rexach J,Navarro-Gochicoa M T,et al. Boron deficiency increases the levels of cytosolic Ca2+ and expression of Ca2+-related genes in Arabidopsis thaliana roots[J]. Plant Physiology and Biochemistry,2013,65:55-60.
[49]Yang C Q,Liu T,Bai F X,et al. miRNAome analysis associated with anatomic and transcriptomic investigations reveal the polar exhibition of corky split vein in boron defcient Citrus sinensis[J]. Molecular Genetics and Genomics,2015,290:1639-1657.
[50]Liu X,Zhang J W,Guo L X,et al. Transcriptome changes associated with boron deficiency in leaves of two citrus scion-rootstock combinations[J]. Frontiers in Plant Science,2017,8:317.
[51]Tombuloglu G,Tombuloglu H,Sakcali M S,et al. High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron[J]. Gene,2015,557(1):71-81.
[52]Wilkins M R,Sanchez J C,Gooley A A,et al. Progress with proteome projects:Why all proteins expressed by a genome should be identified and how to do it?[J]. Biotechnology and Genetic Engineering Reviews,1996,13(1):19-50.
[53]Pandey A,Mann M. Proteomics to study genes and genomes[J]. Nature,2000,405(6788):837-846.
[54]李谣,廖霞,肖星凝,等. 基于蛋白质组学的植物多酚抗肿瘤作用机制研究进展[J]. 食品科学,2016,37(3):235-260.
[55]Salekdeh G H,Siopongco J,Ghareyazie L J W B,et al. A proteomic approach to analyzing drought-and salt-responsiveness in rice[J]. Field Crops Research,2002,76:199-219.
[56]Yang L T,Qi Y P,Lua Y B,et al. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency[J]. Journal of Proteomics,2013,93:179-206.
[57]Sang W,Huang Z R,Qi Y P,et al. Two-dimensional gel electrophoresis data in support of leaf comparative proteomics of two citrus species differing in boron-tolerance[J]. Data in Brief,2015,4:44-46.
[58]Chen M,Mishra S,Heckathorn S A,et al. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis carbohydrate metabolism,and protein synthesis[J]. Journal of Plant Physiology,2014,171(3/4):235-242.
[59]Wang Z H,Wang Z F,Chen S S,et al. Proteomics reveals the adaptability mechanism of Brassica napus to short-term boron deprivation[J]. Plant and Soil,2011,47:195-210.
[60]Alves M,Moes S,Jen P,et al. The analysis of Lupinus albus root proteome revealed cytoskeleton altered features due to long-term boron deficiency[J]. Journal of Proteomics,2011,74(8):1351-1363.
[61]Harrigan G G,Goodacre R. Metabolic profiling:its role in biomarker discovery and gene function analysis[M]. London:Kluwer Academic Publishers,2003:223-256.
[62]Dunn W B,Ellis D I. Metabolomics:current analytical platforms and methodologies[J]. Trends in Analytical Chemistry,2005,24(4):285-294.
[63]Dunn W B,Broadhurst D I,Atherton H J,et al. Systems level studies of mammalian metabolomes:the roles of mass spectrometry and nuclear magnetic resonance spectroscopy[J]. Chemical Society Reviews,2011,40(1):387-426.
[64]郑海慧,陈明毅,钟丹敏,等. 定量代谢组学研究进展[J]. 药学进展,2017,41(4):254-262.
[65]Quéro A,Jousse C,Lequart-Pillon M,et al. Improved stability of TMS derivatives for the robust quantifcation of plant polar metabolites by gas chromatography-mass spectrometry[J]. Journal of Chromatography B,2014,970:36-43.
[66]Yang S,Sadilek M,Synovec R E,et al. Liquid chromatography-tandem quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry measurement of targeted metabolites of methylobacterium extorquens AM1 grown ontwo different carbon sources[J]. Journal of Chromatography A,2009,1216(15):3280-3289.
[67]Li Q H,Zhao C X,Li Y,et al. Liquid chromatography/mass spectrometrybased metabolic profling to elucidate chemical differences of tobacco leaves between Zimbabwe and China[J]. Journal of Separation Science,2011,34(2):119-126.
[68]Ott K H,Aranibar N,Singh B J,et al. Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts[J]. Phytochemistry,2003,62(6):971-985.
[69]Tang Y P,Shen U,Kai J,et al. Comparative metabolomics analysis for the compatibility and incompatibility of kansui and licorice with different ratios by UHPLC-QTOF/MS and multivariate data analysis[J]. Journal of Chromatography B,2017,1057:40-45.
[70]Berkov S,Bastida J,Viladomat F,et al. Development and validation of a GC-MS method for rapid determination of galanthamine in Leucojum aestivum and Narcissus ssp.:a metabolomic approach[J]. Talanta,2011,83(5):1455-1465.
[71]尹恒,李曙光,白雪芳,等. 植物代谢组学的研究方法及其应用[J]. 植物学报,2005,22(5):532-540.
[72]刘亚林,吴秀文,闫磊,等. 植物硼钙效应及其在细胞壁中互作机制的研究[J]. 植物科学学报,2018,36(5):767-773.
[73]Roessner U,Patterson J H,Forbes M G,et al. An investigation of boron toxicity in barley using metabolomics[J]. Plant Physiology,2006,142:1087-1101.
[74]Marta A,Helena M,Candido P R,et al. Metabolic analysis revealed altered amino acid profiles in Lupinus albus organs as a result of boron deficiency[J]. Physiologia Plantarum,2011,142(3):224-232.
[75]Liu G D,Dong X C,Jiang C C,et al. Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency[J]. Physiologia Plantarum,2015,153(4):513-524.
[76]Dong X C,Yan L,Jiang C C,et al. Different metabolite profile and metabolic pathway with leaves and roots in response to boron deficiency at the initial stage of citrus rootstock growth[J]. Plant Physiology and Biochemistry,2016,108:121-131.

相似文献/References:

[1]郁连红,杨军,姚青菊.土壤施硼、锌、锰肥对多花黄精药材产量及药效成分含量的影响[J].江苏农业科学,2013,41(12):257.
 Yu Lianhong,et al.Effects of boron, zinc and manganese fertilizers applied to soils on yield and active component contents of Polygonatum cyrtonema[J].Jiangsu Agricultural Sciences,2013,41(23):257.
[2]倪晓鹏,高志红.园艺作物基因组测序研究进展[J].江苏农业科学,2016,44(02):9.
 Ni Xiaopeng,et al.Research progress on genome sequencing of horticultural crops[J].Jiangsu Agricultural Sciences,2016,44(23):9.
[3]杨阳,韩晓梅,陈迎春,等.叶面喷施硼钙对贵妃玫瑰葡萄产量、品质及硼、钙含量的影响[J].江苏农业科学,2018,46(07):144.
 Yang Yang,et al.Effects of foliar application of boron and calcium on fruit yield, quality,and boron and calcium nutrition of Guifeimeigui grape[J].Jiangsu Agricultural Sciences,2018,46(23):144.
[4]齐世杰,赵静娟,郑怀国.基于ESI的全球作物生物育种领域研究前沿分析[J].江苏农业科学,2021,49(19):9.
 Qi Shijie,et al.Research frontier analysis of global crop biological breeding based on ESI[J].Jiangsu Agricultural Sciences,2021,49(23):9.
[5]李铮,王金辉,丁丽丽,等.贝莱斯芽孢杆菌菌株NZ-4生防潜能及基因组学分析[J].江苏农业科学,2023,51(2):117.
 Li Zheng,et al.Biocontrol potential and genomic analysis of Bacillus velezensis strain NZ-4[J].Jiangsu Agricultural Sciences,2023,51(23):117.
[6]丁倩,吴蕾,张保龙,等.中国基因组学与农业的交叉融合进展与思考[J].江苏农业科学,2023,51(18):28.
 Ding Qian,et al.Progress and consideration of cross-integration of Chinas genomics and agriculture[J].Jiangsu Agricultural Sciences,2023,51(23):28.

备注/Memo

备注/Memo:
收稿日期:2021-04-26
基金项目:南京林业大学青年创新基金(编号:CX2018007);江苏高校优势学科建设工程资助项目(PAPD)。
作者简介:杨万霞(1978—),女,山东东阿人,博士,讲师,主要从事人工林定向培育和木本药用植物的次生代谢研究。E-mail:yangwanxia@njfu.com.cn。
更新日期/Last Update: 2021-12-05