|本期目录/Table of Contents|

[1]黄亚成,任东立,何斌,等.转录组学和代谢组学在植物非生物胁迫中的研究进展[J].江苏农业科学,2023,51(22):1-7.
 Huang Yacheng,et al.Research progress in transcriptomics and metabolomics in plant abiotic stress[J].Jiangsu Agricultural Sciences,2023,51(22):1-7.
点击复制

转录组学和代谢组学在植物非生物胁迫中的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第22期
页码:
1-7
栏目:
专论与综述
出版日期:
2023-12-04

文章信息/Info

Title:
Research progress in transcriptomics and metabolomics in plant abiotic stress
作者:
黄亚成1任东立12何斌1赵艳妹12龚小见2陈锦秀1刘林娅1
1.六盘水师范学院生物科学与技术学院,贵州六盘水 553000;2.贵州师范大学贵州省山地环境信息系统与生态环境保护重点实验室,贵州贵阳 550000
Author(s):
Huang Yachenget al
关键词:
植物转录组学代谢组学非生物胁迫研究进展
Keywords:
-
分类号:
S184
DOI:
-
文献标志码:
A
摘要:
随着全球现代工业的快速发展和气候的变化,植物在生长发育的过程中遭受非生胁迫越来越频繁,导致其产量降低、品质受损,甚至植株死亡。植物在应答非生物胁迫的过程中,会通过一系列的生理生化、分子细胞水平的变化来维持生命和持续生长。当前,代谢组学常用于分析植物响应非生物胁迫时代谢产物的种类及其变化规律,而转录组学能够帮助挖掘代谢产物合成的关键基因和转录调控因子。因此,本文就近年来利用代谢组和转录组分析植物应答高温胁迫、低温胁迫、干旱胁迫、淹水胁迫、金属胁迫、盐胁迫、光胁迫等方面的研究进展进行了综述,展望了将来转录组和代谢组在植物抗逆研究中的应用,有助于加快解析植物响应非生物胁迫的机理,并为今后植物抗逆机制的研究提供参考。
Abstract:
-

参考文献/References:

[1]许秋健,李丽,王松标,等. 代谢组和转录组联合分析果树生理机制的研究进展[J]. 果树学报,2020,37(9):1413-1424.
[2]陈春宇. 基于转录组和代谢组解析五味子木脂素和黄酮生物合成途径[D]. 长春:吉林农业大学,2020.
[3]田嘉树,丁光荣,王晓丽,等. 基于文献计量学的烟草代谢组知识图谱分析[J]. 烟草科技,2022,55(3):31-38.
[4]Wishart D S. Current progress in computational metabolomics[J]. Briefings in Bioinformatics,2007,8(5):279-293.
[5]Jiao Y,Bai Z,Xu J,et al. Metabolomics and its physiological regulation process reveal the salt-tolerant mechanism in Glycine soja seedling roots[J]. Plant Physiology and Biochemistry,2018,126:187-196.
[6]Deng M,Zhang X H,Luo J Y,et al. Metabolomics analysis reveals differences in evolution between maize and rice[J]. Plant Journal,2020,103(5):1710-1722.
[7]Barros K A,Esteves-Ferreira A A,Inaba M,et al. Diurnal patterns of growth and transient reserves of sink and source tissues are affected by cold nights in barley[J]. Plant,Cell and Environment,2020,43(6):1404-1420.
[8]Negi P,Rai A N,Suprasanna P. Moving through the stressed genome:emerging regulatory roles for transposons in plant stress response[J]. Frontiers in Plant Science,2016,7:1448.
[9]Zhang A H,Sun H,Wang P,et al. Modern analytical techniques in metabolomics analysis[J]. Analyst,2012,137(2):293-300.
[10]Singh S,Parihar P,Singh R,et al. Heavy metal tolerance in plants:role of transcriptomics,proteomics,metabolomics,and ionomics[J]. Frontiers in Plant Science,2016,6:1143.
[11]Gong Z Z,Xiong L M,Shi H Z,et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China(Life Sciences),2020,63(5):635-674.
[12]Maestri E,Klueva N,Perrotta C,et al. Molecular genetics of heat tolerance and heat shock proteins in cereals[J]. Plant Molecular Biology,2002,48(5/6):667-681.
[13]Scharf K D,Berberich T,Ebersberger I,et al. The plant heat stress transcription factor (Hsf) family:structure,function and evolution[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms,2012,1819(2):104-119.
[14]Yang H,Gu X T,Ding M Q,et al. Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize[J]. Scientific Reports,2018,8(1):15665.
[15]Guo J,Gu X T,Lu W P,et al. Multiomics analysis of kernel development in response to short-term heat stress at the grain formation stage in waxy maize[J]. Journal of Experimental Botany,2021,72(18):6291-6304.
[16]Jiao Z L,Xu W J,Nong Q D,et al. An integrative transcriptomic and metabolomic analysis of red pitaya (Hylocereus polyrhizus) seedlings in response to heat stress[J]. Genes,2021,12(11):1714.
[17]李澳旋,吕振涛,林奕翰,等. 药用蒲公英幼苗对高温胁迫的响应[J]. 山西农业科学,2022,50(4):510-516.
[18]Rivero R M,Ruiz J M,Garcia P C,et al. Resistance to cold and heat stress:accumulation of phenolic compounds in tomato and watermelon plants[J]. Plant Science,2001,160(2):315-321.
[19]Li Y Y,Wang X W,Ban Q Y,et al. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis[J]. BMC Genomics,2019,20(1):624.
[20]Zhang X H,Teixeira da Silva J A,Niu M Y,et al. Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves[J]. Scientific Reports,2017,7:42165.
[21]Long S X,Yan F Y,Yang L,et al. Responses of Manila Grass (Zoysia matrella) to chilling stress:from transcriptomics to physiology[J]. PLoS One,2020,15(7):e0235972.
[22]Zhang W F,Gong Z H,Wu M B,et al. Integrative comparative analyses of metabolite and transcript profiles uncovers complex regulatory network in tomato (Solanum lycopersicum L.) fruit undergoing chilling injury[J]. Scientific Reports,2019,9(1):4470.
[23]袁景丽. 陆地棉紫化突变体HS2应答低温胁迫的生理生化与分子机理的初步研究[D]. 杭州:浙江理工大学,2021.
[24]Hou J F,Huang X,Sun W,et al. Accumulation of water-soluble carbohydrates and gene expression in wheat stems correlates with drought resistance[J]. Journal of Plant Physiology,2018,231:182-191.
[25]Michaletti A,Naghavi M R,Toorchi M,et al. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat[J]. Scientific Reports,2018,8(1):5710.
[26]Zi X J,Zhou S Y,Wu B Z. Alpha-linolenic acid mediates diverse drought responses in maize (Zea mays L.) at seedling and flowering stages[J]. Molecules,2022,27(3):771.
[27]Hong Y,Ni S J,Zhang G P. Transcriptome and metabolome analysis reveals regulatory networks and key genes controlling barley malting quality in responses to drought stress[J]. Plant Physiology and Biochemistry,2020,152:1-11.
[28]Gai Z S,Wang Y,Ding Y Q,et al. Exogenous abscisic acid induces the lipid and flavonoid metabolism of tea plants under drought stress[J]. Scientific Reports,2020,10(1):12275.
[29]Wang C T,Ru J N,Liu Y W,et al. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants[J]. International Journal of Molecular Sciences,2018,19(10):3046.
[30]Acevedo R M,Avico E H,Gonzalez S,et al. Transcript and metabolic adjustments triggered by drought in Ilex paraguariensis leaves[J]. Planta,2019,250(2):445-462.
[31]Urano K,Maruyama K,Ogata Y,et al. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics[J]. Plant Journal,2009,57(6):1065-1078.
[32]Cruz de Carvalho M H. Drought stress and reactive oxygen species:production,scavenging and signaling[J]. Plant Signal Behav,2008,3(3):156-165.
[33]卫凯,朱慧森,岑慧芳,等. 干旱胁迫下偏关苜蓿保护酶及转录组差异性分析[J]. 山西农业科学,2022,50(3):303-313.
[34]沈家涛,金雅芳,李金灵,等. 植物激素调控植物耐涝响应机理研究进展[J]. 植物生理学报,2022,58(4):643-653.
[35]Nakamura T,Yamamoto R,Hiraga S,et al. Evaluation of metabolite alteration under flooding stress in soybeans[J]. Japan Agricultural Research Quarterly,2012,46(3):237-248.
[36]闫臻,齐钊,熊睿,等. 火龙果根系在淹水胁迫下的基因差异表达[J]. 热带生物学报,2018,9(3):312-319.
[37]Zhang Q,Tang S,Li J,et al. Integrative transcriptomic and metabolomic analyses provide insight into the long-term submergence response mechanisms of young Salix variegata stems[J]. Planta,2021,253(5):88.
[38]Ding W W,Fang W B,Shi S Y,et al. Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway[J]. Plant Molecular Biology Reporter,2016,34(6):1111-1126.
[39]Verslues P E,Agarwal M,Katiyar-Agarwal S,et al. Methods and concepts in quantifying resistance to drought,salt and freezing,abiotic stresses that affect plant water status[J]. Plant Journal,2006,45(4):523-539.
[40]Miller G,Suzuki N,Ciftci-Yilmaz S,et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant,Cell and Environment,2010,33(4):453-467.
[41]Fricke W,Akhiyarova G,Veselov D,et al. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves[J]. Journal of Experimental Botany,2004,55(399):1115-1123.
[42]Long W H,Zou X L,Zhang X K. Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage[J]. PLoS One,2015,10(2):e0116217.
[43]Zhang M Z,Yu Z M,Zeng D Q,et al. Transcriptome and metabolome reveal salt-stress responses of leaf tissues from Dendrobium officinale[J]. Biomolecules,2021,11(5):736.
[44]Shu J B,Ma X,Ma H,et al. Transcriptomic,proteomic,metabolomic,and functional genomic approaches of Brassica napus L. during salt stress[J]. PLoS One,2022,17(3):e0262587.
[45]Xing Y,Jia W S,Zhang J H. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis[J]. Plant Journal,2008,54(3):440-451.
[46]张小花.外源独脚金内酯对黄瓜盐胁迫耐受性的影响[D]. 兰州:西北师范大学,2021.
[47]李晓翠. 新疆小拟南芥MAPK和MKK基因家族的鉴定及表达特征分析[D]. 石河子:石河子大学,2020.
[48]Raza A,Tabassum J,Zahid Z,et al. Advances in “Omics” approaches for improving toxic metals/metalloids tolerance in plants[J]. Frontiers in Plant Science,2022,12:794373.
[49]Raza A,Habib M,Charagh S,et al. Genetic engineering of plants to tolerate toxic metals and metalloids[M]//Handbook of bioremediation. Cambridge,MA:Academic Press,2020:411-436.
[50]Salehi H,Chehregani R A,Raza A,et al. Foliar application of CeO2 nanoparticles alters generative components fitness and seed productivity in bean crop (Phaseolus vulgaris L.) [J]. Nanomaterials,2021,11(4):862.
[51]Chen M,Fang X,Wang Z,et al. Multi-omics analyses on the response mechanisms of ‘Shine Muscat’ grapevine to low degree of excess copper stress (Low-ECS) [J]. Environmental Pollution,2021,286:117278.
[52]Hou W H,Chen X,Song G L,et al. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor) [J]. Plant Physiology and Biochemistry,2007,45(1):62-69.
[53]袁俊,盛莎莎,刘荣鹏,等. 镉胁迫对丹参生理特性和代谢特征的影响[J]. 植物科学学报,2022,40(3):408-417.
[54]Panda S K,Choudhury S. Chromium stress in plants[J]. Brazilian Journal of Plant Physiology,2005,17(1):95-102.
[55]Dubey S,Misra P,Dwivedi S,et al. Transcriptomic and metabolomic shifts in rice roots in response to Cr(Ⅵ) stress[J]. BMC Genomics,2010,11:648.
[56]姜小春. 转录因子HY5系统调控番茄高光胁迫抗性的作用及其机制研究[D]. 杭州:浙江大学,2021.
[57]张子昆,林碧英,杨永森,等. 加富CO2环境下不同红蓝光配比对蕹菜生长、品质和固碳量的影响[J]. 江苏农业科学,2023,51(1):136-142.
[58]罗正宏,周璇,赵宜婷,等. 外源水杨酸诱导桑叶响应紫外线胁迫的转录组变化分析[J]. 蚕业科学,2019,45(6):781-789.
[59]Zheng C,Ma J Q,Ma C L,et al. Regulation of growth and flavonoid formation of tea plants (Camellia sinensis) by blue and green light[J]. Journal of Agricultural and Food Chemistry,2019,67(8):2408-2419.
[60]Fu X M,Chen Y Y,Mei X,et al. Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength[J]. Scientific Reports,2015,5:16858.
[61]Liu Y Y,Chen X R,Wang J P,et al. Transcriptomic analysis reveals flavonoid biosynthesis of Syringa oblata Lindl. in response to different light intensity[J]. BMC Plant Biology,2019,19(1):487.
[62]陈天池,徐涛,李学孚,等. 基于转录组分析弱光胁迫对葡萄幼苗的影响[J]. 生物工程学报,2022,38(10):3859-3877.

相似文献/References:

[1]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(22):362.
[2]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(22):349.
[3]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
 Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(22):292.
[4]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
 Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(22):348.
[5]王琳,孙庆玲,刘辉,等.拟南芥缺失突变体at14a的比较转录组分析[J].江苏农业科学,2016,44(04):70.
 Wang Lin,et al.Comparative transcriptional analysis of mutant at14a of Arabidopsis thaliana[J].Jiangsu Agricultural Sciences,2016,44(22):70.
[6]郭义红,孙威江,林伟东,等.植物DNA条形码鉴定研究进展[J].江苏农业科学,2016,44(07):19.
 Guo Yihong,et al.Research progress of plant Identification by DNA barcoding[J].Jiangsu Agricultural Sciences,2016,44(22):19.
[7]陈露,杨立明,罗玉明.植物ICE蛋白基因家族的系统进化分析[J].江苏农业科学,2016,44(02):42.
 Chen Lu,et al.Phylogenetic analysis of ICE protein gene family in plants[J].Jiangsu Agricultural Sciences,2016,44(22):42.
[8]韩俊杰,王昊龙,李卫华.关联分析及其在不同分子标记中的应用综述[J].江苏农业科学,2016,44(02):13.
 Han Junjie,et al.Correlation analysis and its application in different molecular markers[J].Jiangsu Agricultural Sciences,2016,44(22):13.
[9]白晓龙,杨春和,顾卫兵,等.不同植物人工湿地净化模拟生活污水效果[J].江苏农业科学,2014,42(04):326.
 Bai Xiaolong,et al.Purifying effects of artificial wetlands with different vegetation systems on synthetic domestic sewage[J].Jiangsu Agricultural Sciences,2014,42(22):326.
[10]李海波,王鹏飞,李英华.用于城市径流净化的岸堤漫流技术的植物与基质的组配方式[J].江苏农业科学,2015,43(07):357.
 Li Haibo,et al.Equipping way of plants and substrates of embankment flowing technology used for urban runoff purification[J].Jiangsu Agricultural Sciences,2015,43(22):357.

备注/Memo

备注/Memo:
收稿日期:2023-03-30
基金项目:贵州省科学技术基金(编号:黔科合基础[2020]1Y115);六盘水市科技计划(编号:52020-2022-PT-03);2022年度六盘水师范学院科学研究计划(编号:LPSSYLPY202234);贵州省大学生创新训练项目(编号:S202210977055、S202210977126)。
作者简介:黄亚成(1987—),男,湖南武冈人,博士,副教授,主要从事植物生物化学与分子生物学研究。E-mail:yachenghuang1314@126.com。
通信作者:刘林娅,博士,副教授,主要从事作物分子遗传育种研究。E-mail:liulinya913@126.com。
更新日期/Last Update: 2023-11-20