[1]van Zelm E,Zhang Y X,Testerink C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology,2020,71:403-433.
[2]Kawa D,Meyer A J,Dekker H L,et al. SnRK2 protein kinases and mRNA decapping machinery control root development and response to salt[J]. Plant Physiology,2019,182(1):361-377.
[3]Qu Y J,Nong Q D,Jian S G,et al. An AP2/ERF gene,HuERF1,from pitaya (Hylocereus undatus) positively regulates salt tolerance[J]. International Journal of Molecular Sciences,2020,21(13):4586.
[4]Bi C X,Yu Y H,Dong C H,et al. The bZIP transcription factor TabZIP15 improves salt stress tolerance in wheat[J]. Plant Biotechnology Journal,2021,19(2):209-211.
[5]Wang S S,Shi M Y,Zhang Y,et al. FvMYB24,a strawberry R2R3-MYB transcription factor,improved salt stress tolerance in transgenic Arabidopsis[J]. Biochemical and Biophysical Research Communications,2021,569:93-99.
[6]Qin Y X,Tian Y C,Han L,et al. Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications,2013,441(2):476-481.
[7]Qin Y X,Tian Y C,Liu X Z. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications,2015,464(2):428-433.
[8]Niu C F,Wei W,Zhou Q Y,et al. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants[J]. Plant,Cell & Environment,2012,35(6):1156-1170.
[9]Kuki Y,Ohno R,Yoshida K,et al. Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry,2020,150:71-79.
[10]Ye H,Qiao L Y,Guo H Y,et al. Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-a is referred to drought and salt resistances[J]. Frontiers in Plant Science,2021,12:663118.
[11]Jiang J,Ma S,Ye N,et al. WRKY transcription factors in plant responses to stresses[J]. J Integr Plant Biol,2017,59(2):86-101.
[12]Cheng Z Y,Luan Y T,Meng J S,et al. WRKY transcription factor response to high-temperature stress[J]. Plants,2021,10(10):2211.
[13]Sahebi M,Hanafi M M,Rafii M Y,et al. Improvement of drought tolerance in rice (Oryza sativa L.):genetics,genomic tools,and the WRKY gene family[J]. BioMed Research International,2018,2018:3158474.
[14]Liu B,Hong Y B,Zhang Y F,et al. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress[J]. Plant Science,2014,227:145-156.
[15]Eulgem T,Rushton P J,Robatzek S,et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[16]Brand L H,Fischer N M,Harter K,et al. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays[J]. Nucleic Acids Research,2013,41(21):9764-9778.
[17]Bakshi M,Oelmüller R. WRKY transcription factors:jack of many trades in plants[J]. Plant Signaling & Behavior,2014,9(2):e27700.
[18]Chen L G,Song Y,Li S J,et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2012,1819(2):120-128.
[19]Rushton P J,Somssich I E,Ringler P,et al. WRKY transcription factors[J]. Trends in Plant Science,2010,15(5):247-258.
[20]Chen C,Chen Z. Isolation and characterization of two pathogen-and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco[J]. Plant Molecular Biology,2000,42(2):387-396.
[21]Rinerson C I,Rabara R C,Tripathi P,et al. The evolution of WRKY transcription factors[J]. BMC Plant Biology,2015,15:66.
[22]Lv B B,Wu Q,Wang A H,et al. A WRKY transcription factor,FtWRKY46,from Tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana[J]. Plant Physiology and Biochemistry,2020,147:43-53.
[23]Pillai S E,Kumar C,Patel H K,et al. Overexpression of a cell wall damage induced transcription factor,OsWRKY42,leads to enhanced callose deposition and tolerance to salt stress but does not enhance tolerance to bacterial infection[J]. BMC Plant Biology,2018,18(1):177.
[24]Zhu H,Zhou Y Y,Zhai H,et al. A novel sweetpotato WRKY transcription factor,IbWRKY2,positively regulates drought and salt tolerance in transgenic Arabidopsis[J]. Biomolecules,2020,10(4):506.
[25]Cai R H,Dai W,Zhang C S,et al. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants[J]. Planta,2017,246(6):1215-1231.
[26]Song Y S,Li J L,Sui Y,et al. The sweet Sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis[J]. Plant Molecular Biology,2020,102(6):603-614.
[27]Ullah A,Sun H,Hakim,et al. A novel cotton WRKY gene,GhWRKY6-like,improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species[J]. Physiologia Plantarum,2018,162(4):439-454.
[28]Zhou L,Wang N N,Gong S Y,et al. Overexpression of a cotton (Gossypium hirsutum) WRKY gene,GhWRKY34,in Arabidopsis enhances salt-tolerance of the transgenic plants[J]. Plant Physiology and Biochemistry,2015,96:311-320.
[29]Guo Q,Zhao L,Fan X Q,et al. Transcription factor GarWRKY5 is involved in salt stress response in diploid cotton species (Gossypium aridum L.)[J]. International Journal of Molecular Sciences,2019,20(21):5244.
[30]范昕琦. 旱地棉(Gossypium aridum)耐盐相关WRKY转录因子的全基因组鉴定、克隆及功能分析[D]. 南京:南京农业大学,2015.
[31]Ma Q B,Xia Z L,Cai Z D,et al. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana[J]. Frontiers in Plant Science,2019,9:1979.
[32]Xu Z L,Raza Q,Xu L,et al. GmWRKY49,a salt-responsive nuclear protein,improved root length and governed better salinity tolerance in transgenic Arabidopsis[J]. Frontiers in Plant Science,2018,9:809.
[33]徐照龙. 大豆盐胁迫表达谱分析及盐响应转录因子bZIP110、WRKY49和WRKY111的功能研究[D]. 南京:南京农业大学,2013.
[34]Li C,Liu X Y,Ruan H,et al. GmWRKY45 enhances tolerance to phosphate starvation and salt stress,and changes fertility in transgenic Arabidopsis[J]. Frontiers in Plant Science,2020,10:1714.
[35]Zhou Q Y,Tian A G,Zou H F,et al. Soybean WRKY-type transcription factor genes,GmWRKY13,GmWRKY21,and GmWRKY54,confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal,2008,6(5):486-503.
[36]Du C,Zhao P P,Zhang H R,et al. The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis[J]. Journal of Plant Physiology,2017,215:48-58.
[37]Du C,Ma B J,Wu Z G,et al. Reaumuria trigyna transcription factor RtWRKY23 enhances salt stress tolerance and delays flowering in plants[J]. Journal of Plant Physiology,2019,239:38-51.
[38]杜超. 珍稀泌盐植物长叶红砂2个WRKY转录因子在植物盐胁迫响应和生殖发育中的分子调控机理研究[D]. 呼和浩特:内蒙古大学,2018.
[39]Zheng L,Liu G F,Meng X N,et al. A WRKY gene from Tamarix hispida,ThWRKY4,mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes[J]. Plant Molecular Biology,2013,82(4):303-320.
[40]Wang L,Yao W J,Sun Y,et al. Association of transcription factor WRKY56 gene from Populus simonii×P. nigra with salt tolerance in Arabidopsis thaliana[J]. PeerJ,2019,7:e7291.
[41]Wu M,Liu H L,Han G M,et al. A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants[J]. Scientific Reports,2017,7:11721.
[42]Zhu D,Hou L X,Xiao P L,et al. VvWRKY30,a grape WRKY transcription factor,plays a positive regulatory role under salinity stress[J]. Plant Science,2019,280:132-142.
[43]Jiang Y Q,Deyholos M K.Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Molecular Biology,2009,69(1):91-105.
[44]Scarpeci T E,Zanor M I,Mueller-Roeber B,et al. Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana[J]. Plant Molecular Biology,2013,83(3):265-277.
[45]Wang C,Deng P Y,Chen L L,et al. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco[J]. PLoS One,2013,8(6):e65120.
[46]Wang X T,Zeng J,Li Y,et al. Expression of TaWRKY44,a wheat WRKY gene,in transgenic tobacco confers multiple abiotic stress tolerances[J]. Frontiers in Plant Science,2015,6:615.
[47]Chu X Q,Wang C,Chen X B,et al. Correction:the cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana[J]. PLoS One,2016,11(6):e0157026.
[48]Shi W N,Hao L L,Li J,et al. The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana[J]. Plant Cell Reports,2014,33(3):483-498.
[49]Liu X F,Song Y Z,Xing F Y,et al. GhWRKY25,a group Ⅰ WRKY gene from cotton,confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana[J]. Protoplasma,2016,253(5):1265-1281.
[50]Li J B,Luan Y S,Liu Z. Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco[J]. Physiologia Plantarum,2015,155(3):248-266.
[51]Li J B,Luan Y S,Jin H. The tomato SlWRKY gene plays an important role in the regulation of defense responses in tobacco[J]. Biochemical and Biophysical Research Communications,2012,427(3):671-676.
[52]Wang F,Hou X L,Tang J,et al. A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis),BcWRKY46,enhances the cold,salt and dehydration stress tolerance in transgenic tobacco[J]. Molecular Biology Reports,2012,39(4):4553-4564.
[53]Lin J H,Dang F F,Chen Y P,et al. CaWRKY27 negatively regulates salt and osmotic stress responses in pepper[J]. Plant Physiology and Biochemistry,2019,145:43-51.
[54]Liu Q L,Zhong M,Li S,et al. Overexpression of a chrysanthemum transcription factor gene,DgWRKY3,in tobacco enhances tolerance to salt stress[J]. Plant Physiology and Biochemistry,2013,69:27-33.
[55]Mzid R,Zorrig W,Ayed R B,et al. The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum[J]. 3 Biotech,2018,8(6):277.
[56]Zhu Z G,Shi J L,Cao J L,et al. VpWRKY3,a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata[J]. Plant Cell Reports,2012,31(11):2109-2120.
[57]Agarwal P,Dabi M,Sapara K K,et al. Ectopic expression of JcWRKY transcription factor confers salinity tolerance via salicylic acid signaling[J]. Frontiers in Plant Science,2016,7:1541.
[58]More P,Agarwal P,Joshi P S,et al. The JcWRKY tobacco transgenics showed improved photosynthetic efficiency and wax accumulation during salinity[J]. Scientific Reports,2019,9:19617.
[59]Dabi M,Agarwal P,Agarwal P K. Functional validation of JcWRKY2,a group Ⅲ transcription factor toward mitigating salinity stress in transgenic tobacco[J]. DNA and Cell Biology,2019,38(11):1278-1291.
[60]Niu Y T,Li X T,Xu C,et al. Analysis of drought and salt-alkali tolerance in tobacco by overexpressing WRKY39 gene from Populus trichocarpa[J]. Plant Signaling & Behavior,2021,16(7):1918885.
[61]姚启伦,霍仕平,张俊军. 玉米自交系响应高温、干旱胁迫的关键基因及通路[J]. 江苏农业学报,2021,37(1):29-37.
[62]Huang S Z,Hu L J,Zhang S H,et al. Rice OsWRKY50 mediates ABA-dependent seed germination and seedling growth,and ABA-independent salt stress tolerance[J]. International Journal of Molecular Sciences,2021,22(16):8625.
[63]Zhou S,Zheng W J,Liu B H,et al. Characterizing the role of TaWRKY13 in salt tolerance[J]. International Journal of Molecular Sciences,2019,20(22):5712.
[64]Bo C,Chen H W,Luo G W,et al. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice[J]. Plant Cell Reports,2020,39(1):135-148.
[65]Fang X,Li W,Yuan H T,et al. Mutation of ZmWRKY86 confers enhanced salt stress tolerance in maize[J]. Plant Physiology and Biochemistry,2021,167:840-850.
[66]Wang F,Chen H W,Li Q T,et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants[J]. The Plant Journal,2015,83(2):224-236.
[67]Shi W Y,Du Y T,Ma J,et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean[J]. International Journal of Molecular Sciences,2018,19(12):4087.
[68]Wang Y J,Jiang L,Chen J Q,et al. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean[J]. PLoS One,2018,13(2):e0192382.
[69]Luo X Y,Li C,He X,et al. ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance[J]. Plant Cell Reports,2020,39(2):181-194.
[70]Hichri I,Muhovski Y,iková E,et al. The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato[J]. Frontiers in Plant Science,2017,8:1343.
[71]Gao Y F,Liu J K,Yang F M,et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J]. Physiologia Plantarum,2020,168(1):98-117.
[72]尚静. 茄子SmWRKY40转录因子耐盐功能的初步鉴定[D]. 上海:上海海洋大学,2021.
[73]Liang Q Y,Wu Y H,Wang K,et al. Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic Chrysanthemum[J]. Scientific Reports,2017,7:4799.
[74]Wang K,Wu Y H,Tian X Q,et al. Overexpression of DgWRKY4 enhances salt tolerance in Chrysanthemum seedlings[J]. Frontiers in Plant Science,2017,8:1592.
[75]He L,Wu Y H,Zhao Q,et al. Chrysanthemum DgWRKY2 gene enhances tolerance to salt stress in transgenic Chrysanthemum[J]. International Journal of Molecular Sciences,2018,19(7):2062.
[76]Li P L,Song A P,Gao C Y,et al. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic Chrysanthemum and Arabidopsis plants[J]. Plant Cell Reports,2015,34(8):1365-1378.
[77]Dong Q L,Zheng W Q,Duan D Y,et al. MdWRKY30,a group IIa WRKY gene from apple,confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings[J]. Plant Science,2020,299:110611.
[78]Shekhawat U K S,Ganapathi T R. Musa WRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses[J]. PLoS One,2013,8(10):e75506.
[79]Wang X,Ajab Z,Liu C X,et al. Overexpression of transcription factor SlWRKY28 improved the tolerance of Populus davidiana×P. bolleana to alkaline salt stress[J]. BMC Genetics,2020,21(1):103.
[80]Jiang Y Z,Tong S F,Chen N N,et al. The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in Populus[J]. The Plant Journal,2021,105(5):1258-1273.
[81]Zhao H,Jiang J,Li K L,et al. Populus simonii×Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses[J]. Tree Physiology,2017,37(6):827-844.
[1]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(5):362.
[2]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(5):349.
[3]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(5):292.
[4]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(5):348.
[5]郭义红,孙威江,林伟东,等.植物DNA条形码鉴定研究进展[J].江苏农业科学,2016,44(07):19.
Guo Yihong,et al.Research progress of plant Identification by DNA barcoding[J].Jiangsu Agricultural Sciences,2016,44(5):19.
[6]陈露,杨立明,罗玉明.植物ICE蛋白基因家族的系统进化分析[J].江苏农业科学,2016,44(02):42.
Chen Lu,et al.Phylogenetic analysis of ICE protein gene family in plants[J].Jiangsu Agricultural Sciences,2016,44(5):42.
[7]韩俊杰,王昊龙,李卫华.关联分析及其在不同分子标记中的应用综述[J].江苏农业科学,2016,44(02):13.
Han Junjie,et al.Correlation analysis and its application in different molecular markers[J].Jiangsu Agricultural Sciences,2016,44(5):13.
[8]白晓龙,杨春和,顾卫兵,等.不同植物人工湿地净化模拟生活污水效果[J].江苏农业科学,2014,42(04):326.
Bai Xiaolong,et al.Purifying effects of artificial wetlands with different vegetation systems on synthetic domestic sewage[J].Jiangsu Agricultural Sciences,2014,42(5):326.
[9]李海波,王鹏飞,李英华.用于城市径流净化的岸堤漫流技术的植物与基质的组配方式[J].江苏农业科学,2015,43(07):357.
Li Haibo,et al.Equipping way of plants and substrates of embankment flowing technology used for urban runoff purification[J].Jiangsu Agricultural Sciences,2015,43(5):357.
[10]闻婧,孟力力,张俊,等.弱光对植物光合特性影响的研究进展[J].江苏农业科学,2014,42(07):22.
Wen Jing,et al.Research progress on photosynthetic characteristics of plant under weak light[J].Jiangsu Agricultural Sciences,2014,42(5):22.